UNCLASSIFIED

AD NUMBER

ADB195810

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to DoD only; Specific Authority; 31 Oct 94. Other requests shall be referred to Commander, Army Medical Research and Material Command, Attn: MCMR-RMI-S, Fort Detrick, Frederick, MD 21702-5012.

AUTHORITY

U.S. Army Medical Research and Materiel Command ltr., dtd January 21, 2000.

REPORT DOCUMENTATION PAGE

form Approved OMB No. 0704-0188

Public reporting purden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. To Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arilington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE 31 Oct 94

3. REPORT TYPE AND DATES COVERED

Final Report 2 May 94 - 31 Oct 94

4. TITLE AND SUBTITLE

Development of Anthropometric Analogous Headforms

5. FUNDING NUMBERS C-DAMD17-94-C-4065

6. AUTHOR(S)

M. Mahadeva Reddi Donald F. DeCleene

Bruce M. Bowman * Bryce T. Hartmann

Mitchell B. Oslon

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Conrad Technologies, Inc. Station Square One, Suite 102 Paoli, PA 19301

8. PERFORMING ORGANIZATION REPORT NUMBER

941001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Army U.S. Army Medical Research and Materiel Command Fort Detrick, Frederick, MD 21702-5012 10. SPONSORING / MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

* University of Michigan, Ann Arbor, Michigan

12a. DISTRIBUTION / AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Designing small, medium and large headforms for retention and fit assessment of military helmets was the study's central objective. Using the U.S. Anthropometric Survey, a multivariate procedure for sizing yielded three sets of optimal values for four independent, head and face variables. The remaining variables were set at the median values from three subpopulations (each 5% of the total population) centered about the optimal sets. Other reported data includes inertial properties, skin properties, CAD renderings and waterline cross-sectional geometries.

19950111 136

DTIC QUALETY INTERESTED 3

Anthropometric Headforms; Multivariate Analysis; Surface Modeling; Dummy; Manikin; Head; Face; Helmet; Percentiles; Retention: Fit

19. SECURITY CLASSIFICATION OF ABSTRACT

16. PRICE CODE

15. NUMBER OF PAGES

17. SECURITY CLASSIFICATION OF REPORT

OF THIS PAGE

18. SECURITY CLASSIFICATION

20. LIMITATION OF ABSTRACT

Unclassified

Unclassified

Unclassified

Limited Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

NSN 7540-01-280-5500 DAMD17-94-C-4065

ΑD					

CONTRACT NO: DAMD17-94-C-4065

TITLE: DEVELOPMENT OF ANTHROPOMETRIC ANALAGOUS HEADFORMS

PRINCIPAL INVESTIGATOR: M. Mahadeva Reddi

CONTRACTING ORGANIZATION: Conrad Technologies, Inc.

Station Square One, Suite 102 Paoli, Pennsylvania 19301

REPORT DATE: October 31, 1994

TYPE OF REPORT: Phase I Final Report

PREPARED FOR: U.S. Army Medical Research and Materiel Command

Fort Detrick

Frederick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Distribution authorized to DOD Components only, Specific Authority, October 31, 1994. Other requests shall be referred to the Commander, U.S. Army Medical Research and Materiel Command, ATTN: MCMR-RMI-S, Fort Detrick, Frederick, Maryland 21702-5012.

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

FOREWORD

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.
() Where copyrighted material is quoted, permission has been obtained to use such material.
() Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.
() Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.
() In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).
() For the protection of human subjects, the investigator(s) have adhered to policies of applicable Federal Law 32 CFR 219 and 45 CFR 46.
() In conducting research utilizing recombinant DNA technology,the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.
h h - l - l - l - l - l - l - l - 2 1994

Principal Investigator's Signature

October 28, 1994

Date

Accession For	
ETIS GRA&I	
DTIC TAB	
Unamicunced	n
Justification_	Ç.,j
Ву	
Distribution &	40°
Availability	Codes
Avail and	/07
Mat Special	·
. 1	1
	1. 10
7	一 アイス 機関

ACKNOWLEDGMENT

Dr. Claire C. Gordon and Steven Paquette of U.S. Army Natick Research, Development and Engineering Center made significant contributions to this study not only by making ANSUR data available, but also providing consultation throughout the course of the effort. Dr. Brian Corner of GEO-CENTERS, Inc., who prepared the data files of head and face variables and landmark coordinate data, gave valuable assistance in using the data. Dr. Herbert M. Reynolds of the Biomechanics Department at Michigan State University provided helpful guidance and suggestions about anthropometric modeling, and analysis of anthropometric data. Finally, Mr. B. Joseph McEntire, COTR, U.S. Army Aeromedical Research Laboratory, made the entire effort possible by his encouragement and support. The authors gratefully acknowledge all their contributions.

EXECUTIVE SUMMARY

This report describes the effort leading to the development of designs for three manikin headforms--small, medium, and large--for use in military ejection seat and crashworthiness testing, as well as retention and fit assessment of helmet and head-supported devices. The headform geometries are derived from combined military male and female aviator population data, and interface with the Hybrid III-family dummies.

A literature review identified the U.S. Army Anthropometric Survey (ANSUR) as the most appropriate database for developing the headform surface geometry and properties for several reasons: because of the currency of the data, accuracy due to computerized data acquisition and reduction, inclusion of head and face landmark data, availability of data for individual subjects, and inclusion of separate male and female populations.

A major task of the design effort was to establish the three-dimensional surface geometry of the face and head for the three headform sizes. For this purpose, a multivariate procedure was developed to identify optimal values for the three sizes, of selected independent variables including the head length, breadth, circumference, and a facial length—the menton-to-sellion (nasion) distance. From a combined male and female database, the methodology was used to identify the optimal values of the four independent variables, for the three sizes, based on representation of the 5th percent, 50th percent, and 95th percent populations. Three subpopulations, each of a size of 5% of the total population, and centered about the derived optimal values, were identified. The median values for all other head and face (dependent) variables were determined for each subpopulation and used to develop the corresponding headform.

Other head properties for which headform design specifications were developed include head mass, head principal moments of inertia, locations of the head center of gravity and the head-neck pivot point (the occipital condyles), and friction and force-deflection properties of the headform surface. Data include values reported in the literature for cadaver studies and for the Hybrid III crash dummy. Since the Hybrid III design was based on the best available cadaver data, the present headform specifications, with the exception of surface geometry and principal axes of inertia, were selected to be the same as for the Hybrid III headform.

Creation of the three manikin headform designs was accomplished using the AutoCAD computer-aided design package. A total of 48 linear head dimensions were used to locate the positions of 26 facial landmarks. Landmark positions were entered as three dimensional data points in reference to a user-defined local A headform wireframe was created through the facial coordinate system. landmarks from a system of spline entities. The AutoSurf surface modeling system was then used to generate surfaces between closed sections of the headform wireframe. Separate skin and skull surface layers were generated for each of the three sizes of headforms. In addition to rendering the headform images, the shapes of the headforms were described using waterlines and a headform coordinate system, and the exterior dimensions of each headform skin and skull surface were presented in tabular form. The AutoCAD software is capable of producing output files that accurately describe the headform surfaces in the IGES format, and these files can be used effectively in the fabrication and machining of solid models from computer based designs.

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SELECTION OF ANTHROPOMETRIC DATABASE	
3.0 METHODOLOGY FOR CHARACTERIZING POPULATION EXTREMES.	
3.1 Delineation of sizes	
3.2 Subpopulations	
3.3 Dependent variables	
3.4 Selection of Independent Variables	
4.0 MULTIVARIATE LIMIT ANALYSIS COMPUTER PROGRAMS	
4.1 Multivariate Limit Analysis Summary	
5.0 HEAD INERTIAL PROPERTIES.	
5.1 Midsized Headform	
5.2 Small and Large Headforms	
5.3 Definitions and Other Considerations	
6.0 LOCATIONS OF THE HEAD CENTER OF GRAVITY AND THE	
OCCIPITAL CONDYLES PIVOT	. 25
6.1 Midsized Headform	
6.2 Small and Large Headforms	
7.0 SKIN PROPERTIES	
7.1 Friction Properties	
7.2 Force-Deflection Properties	29
8.0 HEADFORM MODEL DEVELOPMENT	
9.0 HEADFORM FABRICATION ALTERNATIVES	. 42
9.1 Stereolithography	
9.2 Selective Laser Sintering	43
9.3 Directed Light Fabrication	. 43
9.4 Laminated Object Manufacturing	43
10.0 CONCLUSIONS	44
11.0 REFERENCES	. 47
·	
APPENDIX A - LITERATURE SEARCH	
APPENDIX B - MULTIVARIATE LIMIT ANALYSIS TABLES	
APPENDIX C - HEADFORM SKIN AND SKULL EXTERIOR DIMENSION	
TABLES	

1.0 INTRODUCTION

Modern combat aircraft such as the Blackhawk incorporate various weapons systems which require significant aviator proficiency. Missions such as Nap-of-the-Earth (NOE), Night Vision Goggle (NVG) operations, anti-armor and chemical warfare, and air-to- air/air-to-ground combat pose requirements on the helmet which are complex in terms of helmet-mounted equipment. Some of the resulting helmet characteristics, including excessive weight and moments of inertia, bulkiness, improper location of center of gravity, poor helmet retention, inadequate integration with goggles and the helmet sight assembly (HSA), can all be major factors in degrading aviator performance. Also, the helmet is the most ubiquitous form of head protection and as such it must perform well in reducing the severity and probability of injuries to the head.

There are two basic uses of manikins in relation to head dynamic response in high-G, aviation environments, e.g., rotary-wing crashes and fixed-wing ejections. One is to predict the likelihood or severity of injuries to the head, face, or neck that can occur for an aviator subjected to the same high-G conditions as experienced by a test manikin. The second is to evaluate the effectiveness and fit of helmets, masks, and goggles in conditions of high-G responses of the head. Conditions of direct impact loading and also non-contact, inertial loading are pertinent to both of these basic uses.

It is not necessary, however, to use a complete manikin in all experimental studies related to the aforementioned operational factors. Indeed, free-fall and pendulum impact tests of manikin heads alone provide, for many purposes, the most directly meaningful experimental results. Such tests are relatively easily conducted, results are sometimes more easily interpreted, and test conditions and responses are easily controlled and replicated. For these purposes, there are four basic areas of engineering design in which headforms must satisfactorily mimic the human head. These are: 1. anthropometry (dimensions and surface geometry of the face and skull); 2. mass properties (mass, principal moments of inertia, location of center of mass, and orientation of the principal axes of inertia); 3. "skin" and "dura" mechanical properties (primarily, force-deflection characteristics); and 4. location of the occipital pivot at which the head connects to the manikin's neck module. To develop such headforms, therefore, the overall technical objectives of this Phase I study include:

- 1. An in-depth review of relevant literature and identification of a database suitable for representing the aviator population of interest;
- 2. Development of methodologies for characterizing the extremes of a population.

- 3. Analysis and derivation of anthropometric measures for the proposed small, medium and large headforms;
- 4. Sculpture of headform and skullform surfaces, from anatomical landmarks and other anthropometric measures, using a CAD system;
- 5. Development of mass distribution properties, skin properties and occipital pivot location for the headforms;
- 6. Selection of materials suitable for skin and skullform fabrication; and,
- 7. Identification of fabrication technologies which interface directly to CAD files in the IGES format.

2.0 SELECTION OF ANTHROPOMETRIC DATABASE

An extensive literature review was conducted on anthropometric databases. Only the major considerations leading to the selection of a specific anthropometric survey as a database for headform sizing is discussed herein. Additional details are included in Appendix A.

The literature search identified three military anthropometric projects as being of potential usefulness in the current study. These are: 1. the Tri-Service database, 2. the CARD database, and 3. the ANSUR database. The database selected for use in the study is the ANSUR database.

TRI-SERVICE Database. The Tri-Service database is described and documented in [Anthropometry..., 1988]. The data represents 3rd, 50th, and 95th percent aircrew as defined from stature and weight multiple regression equations. (X,Y,Z) data for anatomical landmarks are not given; only "standard" anthropometric dimensional measurements are available.

The unavailability of (X,Y,Z) data for anatomical landmarks and the implicit assumption of a proportional dependence of head and face dimensions on stature and weight are factors which make the Tri-Service database of questionable usefulness for the present study. An additional factor is that the database includes no data for female subjects, which need to be utilized in the current study.

<u>CARD Database</u>. The Anthropometric Database at the U.S. Air Force Computerized Anthropometric Research and Design (CARD) Laboratory, is described in [Robinson, 1992]. The database currently contains nine different surveys, five for Air Force, three for Army and one for Navy. There are databases for both males and females. The earliest survey in the CARD Anthropometric Database is 1965 and the latest is 1977.

The numeric data available are summary statistics and frequency data for each measurement. As with the Tri-Service database, there are no (X,Y,Z) data for anatomical landmarks. Further, as with the Tri-Service database, data for individual subjects does not seem to be available. These two factors, together with the fact that the data are 20-30 years old and thus not entirely representative of the 1990s population, make it doubtful that this database could be used effectively to meet the particular goals of the current study.

ANSUR Database. The U.S. Army Anthropometric Survey (ANSUR), conducted in 1987-1988, is described in [Natick, 1989-91; Hubbard, 1974]. Measurement data for 1,774 men and 2,208 women comprise the working database.

Several factors make the ANSUR data more suitable for the present study than either the Tri-Service data, or the CARD data: First, the currency of the data; second, inclusion of separate male and female groups; third, availability of "raw" data for head and face dimensions; and fourth, improved measurement accuracy due to computerized data acquisition. Also, (X,Y,Z) data for head and facial landmarks are available for all subjects, and such data were considered vital for developing the geometry of the headforms.

3.0 METHODOLOGY FOR CHARACTERIZING POPULATION EXTREMES

Representation of a population by one or more headforms requires consideration of the multivariate nature of the population, to define not only the number of headforms required, but also their specific anthropometric features. For this purpose, characterizing the extremes of a population continues to be a challenging problem in engineering anthropometry, and available techniques are not of universal applicability.

Designers of equipment, or workspaces, frequently derive accommodation limits on the basis of univariate percentiles of anthropometric features. Such use of univariate percentiles to characterize a multivariate space can lead to exclusion of greater than the intended population. Moroney [8] notes that use of univariate percentiles mistakenly presupposes that those individuals with an anthropometric measurement outside the established range on one anthropometric measure will be the same individuals who fall outside the established range on all other anthropometric features. That the supposition is clearly false is noted by others (Haselgrave, 1986) as well.

The traditional procedures for dealing with multivariate situations, generally presume a normal distribution in order to make the analysis tractable. For example, for bivariate normal distribution models, Churchill [9] describes the construction of equal probability ellipses and artificial bivariate tables, which in theory can be extended to any number of variables. Another technique, the principal components analysis, described by Kshirsagar [10] and others, is based on determining the eigenvectors of the variance-covariance matrix and selecting a few of the eigenvectors associated with the largest eigenvalues to represent the space. The limitation of all these methods is that the designer still has to exercise considerable judgment to obtain design limits.

3.1 Delineation of sizes

The major objective of this study is to design headforms which can be used for assessing fit and retention for members of the ANSUR population. But before any such design can be undertaken, two basic questions need to be answered: How many headforms? And of what sizing? These questions will be addressed in the remainder of this section.

In simplistic terms, a headform can be useful for the intended purpose only for those helmets which it will accept: i.e. selected key dimensions of the helmet are equal to, or bigger than the respective dimensions of the headform. Though, resiliency of the padding used in helmets provides a range of head sizes which can be covered but not necessarily accommodated, for this discussion a helmet will be presumed to be useful only up to a limiting key head size. If any single key dimension of a helmet is smaller than the corresponding dimension of a given head, then the helmet can be deemed to be unacceptable for that head.

Conversely, if a key dimension of a head from a given population is bigger than the corresponding dimension of a headform, then the headform cannot be a surrogate for that head. Thus, the argument can be advanced that if one headform alone is to represent a whole population group, then its key dimensions must be such that it is the smallest surrogate for the most number of members in that group. Conventional wisdom would say that the headform probably should be centered; perhaps about the mean, median, or cover 50% of the population in some way. The fallacy here is that if a headform is sized to be centered in the population, then it is unsuitable for use with helmets which are sized for fitting the smaller half of the population. Clearly, the headform has to be smaller than the indications from measures of central tendency, to cover the maximum possible number of members of the group.

To formalize this argument, it is convenient to treat the key dimensions as random variables. Recall the definition of a continuous random variable X over the sample space $0 \le x \le 1$: the probability P that X assumes a value in the interval $0 \le a,b \le 1$ is given by

$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

where, the probability density function f(x) has the properties:

$$f(x) \ge 0$$
 and $\int_0^1 f(x)dx = 1$

Similarly, a cumulative distribution function F for the random variable is given by

$$F(x) = P(X \le x) = \int_{0}^{x} f(u)du$$

Also, recall that for joint distributions of several random variables, single integrals become multiple integrals of corresponding dimensions.

To fix ideas, given two random variables for headform sizing, $\underline{Xmin} \leq \underline{X} \leq \underline{Xmax}$ and $\underline{Ymin} \leq \underline{Y} \leq \underline{Ymax}$, the relevant data can be mapped into the normalized sample space of $0 \leq x \leq 1$ and $0 \leq y \leq 1$ by the transformation

$$x = (X - \underline{Xmin})/(\underline{Xmax} - \underline{Xmin})$$
$$y = (Y - \underline{Ymin})/(\underline{Ymax} - \underline{Ymin})$$

(The purpose of the normalization is twofold: To remove dimensional dissimilarity such as between height, area, volume, or weight, and preserve numerical accuracy in computations.)

The mapping produces the familiar scatter plot, but in a square of unit area, with the population distributed into bins whose size is determined by the number of divisions selected along each axis. The variables now become discrete, and may be treated as such for the purposes of computer implementation; however, they will be regarded as continuous for purposes of this discussion. Using the binned values at (x,y), the probability density function f(x,y) can be determined from:

$$f(x,y) = n/(N.\Delta x.\Delta y)$$

where n is the binned population count, N is the total population count and Δx , Δy , are the binning intervals.

The cumulative distribution function F(x,y) is given by

$$F(x,y) = P(X \le x, Y \le y) = \int_{0}^{x} \int_{0}^{y} f(u,v) du dv$$

Note that 100*F(x,y) represents a percent value of the total population and this subpopulation has key dimensions X and Y such that $X \le x$, and $Y \le y$.

An average probability density, d, can be defined as

$$d(x,y) = F(x,y)/xy$$

If d(x1,y1) is a maximum anywhere in the sample space, then x1 and y1 are key dimensions which define the smallest surrogate for the largest population.

Implementation of the procedure for multidimensional, normalized sample space is made simpler by the following procedure.

For variables X_i , i=1 to m, if f is the probability function, then find x_i , i=1 to m, such that I is a minimum, where

$$I = \int_{0}^{X_1 X_2} \int_{0}^{X_m} du_1 du_2 ... du_m$$

subject to the constraint of a selected value of F as

$$F = \int_{0}^{X_1X_2} \int_{0}^{X_m} f(u_1, u_2, ... u_m) du_1 du_2 ... du_m$$

The above is a constrained minimization problem that can be solved by several techniques from the field of optimization. Also, the constrained minimization problem can be reduced to one which is unconstrained by introducing slack variables. Related details can be found in many publications, including one by Aoki [11]. The major obstacle in implementing these procedures is computation of local derivatives of f up to the second order, depending on the method selected. While this is not a major problem, an algorithm which fits more readily into computations with binned data is described in terms of bivariate data. The procedure is readily generalized to multivariate data.

																					Sum
20	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
19	0	0	0	0	0	0	0	0	0	0	1	0	0	0	. 0	0	0	0	0	0	1
18	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0		1
17	0	0	0	0	0	2	0	0	2	1	1	1	1	0	1	0	0	- 0	0		10
16	0	0	1	3	1	1	2	1	4	4	6	3	1	1	1	0		0	1	0	31
15	1	0	0	0	1	5	6	2	4	10	7	7	3	3	4		0	1	0	0	55
14	0	1	1	1	2	1	2	4	3	11	15	8	9	- 9		0	0	2	1	0	75
13	1	0	3	2	2	8	8	7	17	13	17	14	12	10	4	4	2	0	1	0	125
12	0	0	4	4	8	11	16	28	43	39	44	35		28	9	10	5	1	1	0	315
11	0	2	1	2	8	15	15	17	45	26	35	32		23	14	6	3	0	3	1	269
10	0	0	5	1	4	15	17	25	41	33	40	32	26	16	6	3	2	0	0	0	266
9	1	0	3	0	7	13	11	24	31	23	41	27	14	12	4	2	0	1	0	0	214
8	1	1	0	3	6	17		21	37	26	33	34	14	12	5	1	3	0	0	0	229
7	1	0	1 .	0	3		6	8	17	12	10	8	5	2	2	4	0	0	0	0	84
6	0	1	0	0			4	2	6	4	6	2	1	2	0	1	0	0	0	0	36
5	0	0 3			1	1	1	5	3	1	2	1	0	1	0	0	0	0	0	0	18
4	0	0	0	1	0	1	2	1	3	2	1	0	0	0	0	0	1	0	0	0	12
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_ 1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
Sum	5	5	20	18	45	100	105	145	257	205	259	204	137	120	55	32	17	5	7	2	1743
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

Figure 1. Bivariate Chart for Breadth Vs. Length

To illustrate the process, the scatter plot for head length and head breadth from the ANSUR data for males is shown in figure 1. The search begins at the point which represents the maximum for all variables and proceeds in steps into the interior of the space. The direction of each step is selected such that it results in the least reduction of population in the remaining space. If all directions yield the same reduction in population, then the direction is selected to obtain maximum reduction in sample space. This process is greatly aided by keeping marginal distributions for each variable and updating them at each step to represent the remaining population only. (In terms of the minimization procedure described earlier, the marginal distributions give the local derivatives for each variable.) The resulting trajectory of the search is shown by the shaded area. At each step, the percent of the remaining population, values of the variables, and the average probability density in the remaining sample space, are recorded.

3.2 Subpopulations

If only one headform is to be used to represent a population, then the location of the maximum average probability density in the sample space provides the required key dimensions. When more than one headform is desired, however, additional considerations are needed. An obvious choice is to split the population into subpopulations on some basis and apply the procedure separately to each of the subpopulations. For example, the population may be sorted into the required number of subgroups by the magnitude of the product of the selected variables. Another choice is simply to proceed along the search trajectory for the whole population and use the dimensions recorded for selected percentages of the population. The latter method was selected for use in this effort, as described subsequently.

3.3 Dependent variables

So far, the discussion centered around identifying key dimensions based on selected independent variables, which of necessity have to be few. (Computer memory requirements for the described method increases with the number of variables as an exponent.) Once the key independent dimensions are established, there is still the question of how the others, which may be called dependent, are to be selected:

Linear multiple regression has been used extensively for modeling dependent variables. However, as noted by Haslegrave (1986), it does not always lead to dimensions which could be representative of a real person. Consequently, Haslegrave recommends that once the values of the independent variables are established, a group of people having those values be assembled, measured and median values determined for all other dependent variables. This approach was adopted for the present effort in a modified form as follows:

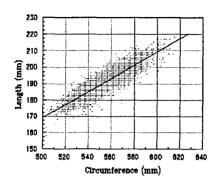
Once the location of the desired set of values for independent variables was identified on the search trajectory, members closest to that point were identified by sweeping the space with an increasing radius until a predetermined number of members were assembled. The data for these members was then screened to establish the medians for all the dependent variables. The cluster assembled for the purposes of the present study, as described later, included 5% of the population centered about each trajectory point of interest

3.4 Selection of Independent Variables

Whatever approach is used for anthropometric modeling, it is necessary to select some small number of variables as primary. These variables, the independent

variables of the model, are the ones that are used for predicting estimates for all of the other variables. Variables that are suitable to serve as independent variables must satisfy two basic criteria. First, they should in some way represent specific, unrelated but basic characteristics of the anthropometry. Second, they need to be related, singly or collectively, to all of the remaining dependent variables.

Hubbard and McLeod (1973; pg. 130) cite a study by Churchill and Truett (1957) in which it was found that there is very low correlation (r = 0.12) between head length and head breadth. Such primary variables are good candidates for roles as independent variables, assuming that in addition to low correlation to each other, they have relatively higher correlation to a significant number of other variables in the database. Hubbard and McLeod also note that the Churchill-Truett study documents a generally poor correlation between dimensions of the head and face. This is found also by McConville and Alexander (1972; pg. 24) and by Cheverud, et al. (1990; Parts 2-5). Thus, in addition to head variables, a length for some facial feature may well be suitable for use as an independent variable.


Using the combined ANSUR male and female data, combinations of the following variables were investigated for use as independent variables in the present study: head length, head breadth, head circumference, menton-to-sellion length, and menton-to-top-of-head length. The scatter plots for pairs of these variables, with superimposed straight lines from linear regression, are illustrated in figures 2a through 2i. The regression data for the straight lines are given in table 1. Values of the correlation coefficient, r, exceeding 0.6 indicates that both the head length and breadth are correlated to circumference; the former strongly, and the latter moderately. Also, menton-to-top-of-head length appears to be moderately correlated to head length and head circumference. Though elimination of head circumference as an independent variable would simplify the model, because it is widely specified as a helmet design variable, an arbitrary decision was made to retain it in the subsequent analyses with the ANSUR data. These analyses are based on three sets of independent variables, as follows:

- Set 1: Head length, head breadth, head circumference and menton-sellion length.
- Set 2: Head length, head breadth, head circumference and menton-top-of-head length.
- Set 3: Head length, head breadth, head circumference.

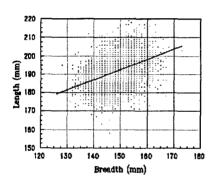
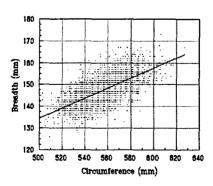
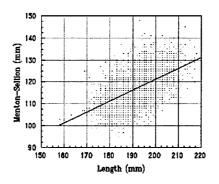

Results from using these sets are described in the next section.

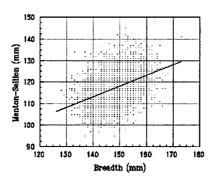
Table 1. Correlation between pairs of variables.


	Dependent Variable y	Independent Variable	Correlation Coefficient	•	Line Parameters Ax+B
		x	r	Α	B(mm)
(a)	Length	Circumference	0.8825	0.3998	-30.5939
(b)	Length	Breadth	0.4190	0.5573	109.3109
(c)	Breadth	Circumference	0.6759	0.2302	19.6835
(d)	Menton-Sellion	Length	0.5524	0.4971	21.9491
(e)	Menton-Sellion	Breadth	0.4129	0.4942	44.2282
_(f)	Menton-Sellion	Circumference	0.5606	0.2286	-9.8263
(g)	Menton-Top of Head	Length	0.6479	0.8742	56.4583
(h)	Menton-Top of Head	Breadth	0.5396	0.9685	80.9830
_(i)	Menton-Top of Head	Circumference	0.6888	0.4211	-10.0595

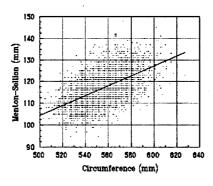
(a)



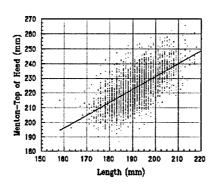
(b)



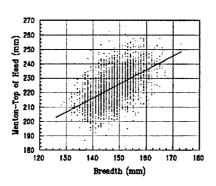
(c)


Figure 2. Linear Regression Correlation of Independent Values

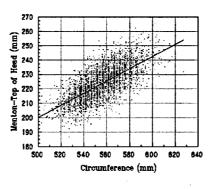
(d)



(e)



(f)


Figure 2. Linear Regression Correlation of Independent Values

(g)

(h)

(i)

Figure 2. Linear Regression Correlation of Independent Values

4.0 MULTIVARIATE LIMIT ANALYSIS COMPUTER PROGRAMS

Four computer programs were written by CTI to develop dimensions for the three headforms (small, medium, and large). The dimensions for the headforms are based on median values for groups of subjects selected by a multivariate limit analysis developed by CTI. The programs were written to handle between two and four independent variables using the analysis method described in the previous section.

The computer programs were written in FORTRAN 77, but included some Fortran 90 extensions, and were compiled and linked using Lahey FORTRAN EM/32 which uses an extended DOS environment on a personal computer. The extended DOS environment was necessary to handle the large number of subjects included in the analysis.

The analyses were completed in four steps with a program written to perform each of the steps. This provided CTI the ability to test several different theoretical methods for the analyses in a time efficient manner. The four programs, HF_LGTHS , HF_DESC4 , HF_GROUP , HF_CMPVS , will be described below in their order of utilization.

HF_LGTHS: The values contained in the original ANSUR head/neck data files received by CTI included coordinate data referenced to the top and back plane of an automated headboard device. To work efficiently with the multivariate limit analysis, the coordinate data were transformed into lengths that conform with the "visual index - head measurements" used by NATICK. The remaining data were the standard head/neck measurements and conformed with the NATICK reports.

The HF_LGTHS program reads the ANSUR data files and transforms the coordinate positions of the facial landmarks to their appropriate lengths and outputs the results to a file. The program also outputs a file containing a table of values for independent variables used in the multivariate limit analysis. This file is prepared for use with the HF_DESC4 program.

HF_DESC4: The multivariate limit analysis procedure is contained within this program. It gives the user the ability to choose the number of independent variables as well as which independent variables should be used given the ones provided by the HF_LGTHS program. Once the user chooses the independent variables, the program reads the independent variables from the file, computes binning values, and bins each subject based on their independent values. The program then travels through the bins iteratively based on the previously described multivariate limit analysis method. Once the iterations are complete, the program linearly interpolates between nearest iterations to determine the 5th, 50th, and 95th percent values for the independent variables. These values for the

independent variables correspond to the small, medium, and large headform sizes respectively.

Now, for each headform size, HF_DESC4 finds the closest five percent of the population to the values based on the independent variables. Subject numbers for each headform size are output to a file for use by the HF_GROUP program.

HF_GROUP: The function of this program is to create three files containing all of the headform measurements for the subjects included in the groupings found by the HF_DESC4 program. HF_GROUP reads the file created by HF_DESC4 and the file of lengths created by HF_LGTHS. It then finds the subjects included for each headform size (small, medium, and large) and writes a file with each subjects dimensions that are included in the group. These files are prepared for use by the HF_CMPVS program.

HF_CMPVS: For each headform (small, medium, and large), HF_CMPVS computes dimensions based on the groupings determined by HF_DESC4. It determines the median values for all head and face dimensions from the files created by HF_GROUP. In addition, HF_CMPVS computes the mean and standard deviation of each dimension for comparison purposes. The program outputs a file which includes a table of means, standard deviations, and medians of all head measurements for each headform size.

4.1 Multivariate Limit Analysis Summary

Three separate analyses were completed using the computer programs discussed in the preceding section. The first analysis method used four independent variables; head length, head breadth, head circumference, and Menton-Sellion length. Use of the Menton-Sellion was motivated by the finding that facial features, in general, correlate poorly with those for the head. The iterative process used in the multivariate limit analysis is shown in table 2 for the first analysis method. As seen in the table, the maximum average probability density occurs after 39 iterations with approximately 41 percent of the population smaller than the current bin values (values of head length, breadth, circumference, and menton-sellion).

Table 2. Example of Multivariate Limit Analysis Iterations for Method 1.

Iteration #	Percent		ning Ind	Average Probability		
	100.00		Analysis I			Density
0	100.00	20	20	20	20	1.00000
1	99.97	20	19	20	20	1.05236
2	99.95	20	18	20	20	1.11055
3	99.92	20	18	20	19	1.16870
4	99.90	20	18	20	18	1.23332
5	99.87	20	18	19	18	1.29790
6	99.80	20	18	18	18	1.36896
7	99.70	20	18	18	17	1.44802
8	99.52	19	18	18	17	1.52152
9	99.37	19	18	17	17	1.60855
10	99.21	18	18	17	17	1.69532
11	98.99	18	18	17	16	1.79714
12	98.71	18	17	17	16	1.89749
13	98.30	18	16	17	16	2.00780
14	97.85	18	16	16	16	2.12339
15	97.44	17	16	16	16	2.23898
16	97.03	17	16	15	16	2.37831
17	96.40	17	16	15	15	2.52030
18	95.59	17	15	15	15	2.66570
19	94.60	17	15	15	14	2.82658
20	93.21	16	15	15	14	2.95899
21	92.27	16	15	14	14	3.13846
22	90.24	15	15	14	14	3.27413
23	88.27	15	15	13	14	3.44876
24	86.57	15	14	13	14	3.62402
25	84.47	15	14	13	13	3.80796
26	82.24	15	13	13	13	3.99260
27	79.68	15	13	12	13	4.19070
28	77.14	14	13	12	13	4.34722
29	74.15	14	13	12	12	4.52693
30	71.31	14	13	12	11	4.74943
31			12	12	11	4.74943
	68.45	14				
32	65.31	14	12	11	11	5.14023
33	63.10	13	12	11	11	5.34875
34	58.41	13	12	10	11	5.44649
35	54.87	12	12	10	11	5.54199
36	51.42	12	11	10	11	5.66602
37	48.02	12	11	10	10	5.82101
38	44.12	12	11	9	10	5.94217
39	41.05	12	10	9	10	6.08211
40	37.53	11	10	9	10	6.06573
41	33.78	11	10	9	9	6.06618
42	30.01	11	10	9	. 8	6.06163
43	26.69	11	9	9	8	5.98995
44	24.35	11	9	8	8	6.14994
45	21.95	10	9	8	8	6.09619
46	19.16	10	9	7	8	6.08211
47	15.26	10	9	7	7	5.53504
48	11.71	10	8	7	7	4.77880

Table 2. Example of Multivariate Limit Analysis Iterations for Method 1.

Iteration #	Percent		ning Ind nalysis l	Average Probability Density		
49	8.92	10	8	6	7	4.24782
50	7.53	9	8	6	7	3.98233
51	5.83	9	7	6	7	3.52453
52	4.26	9	7	6	6	3.00351
53	3.02	9	7	5	6	2.55298
54	2.43	8	7	5	6	2.31699
55	1.67	8	7	4	6	1.99117
56	1.32	7	7	4	6	1.79291
57	0.96	7	7	4	5	1.57225
58	0.68	7	7	3	5	1.48950
59	0.51	7 .	6	3	5	1.28722
60	0.38	6	6	3	5	1.12632
61	0.18	6	5	3	5	0.63074
62	0.10	6	5	2	5	0.54063
63	0.05	6	4	2	5	0.33789
64	0.03	6	4	1	5	0.33789

The second analysis method replaced the Menton-Sellion length with the Menton-Top of Head (head height). The final analysis method only used the head length, breadth, and circumference. The three analysis methods were used to compare the dependency of the different dimensions on the overall head size and shape.

For each analysis, a combined data set was utilized (both male and female data) to compute the results. There were 3946 subjects included, this excluded any subject which contained missing information in the original NATICK data. Therefore, the groups of subjects, based on headform size, contained 197 people representing five percent of the total population.

Tables 3-5 contain a summary of the results for each analysis method. They include the values determined by the multivariate limit analysis, the mean, the median, and the standard deviation, for each independent variable. The results are very close for the first two methods and similar but slightly smaller for the third. This represents the difference between using three or four independent variables. Table 6 shows the clustering of subjects based on gender. The analyses demonstrated the anticipated results that the smaller headforms would contain mostly female subjects, and the larger headforms contain mostly male. Tables containing all head and facial measurements appear in appendix? for the three analysis methods.

Table 3. Small Headform Analysis Summary

Method *see notes	Value	Head Length	Head Breadth	Head Circum- ference	Menton - Sellion	Menton - Top of Head
below		(mm)	(mm)	(mm)	(mm)	(mm)
1	Mult.	185.900	142.450	538.100	112.150	N/A
1	Mean	185.660	142.670	538.827	112.350	215.178
1	Median	186.000	143.000	539.000	112.000	215.100
1	StdDev	2.051	2.226	2.599	2.237	5.919
2	Mult.	185.900	142.450	535.490	N/A	214.420
2	Mean	185.102	142.264	536.442	112.346	214.715
2	Median	185.000	142.000	537.000	111.600	214.600
2	StdDev	2.178	2.393	2.843	4.405	2.989
3	Mult.	185.060	142.450	531.750	N/A	N/A
3	Mean	184.000	141.695	532.964	111.629	213.848
3	Median	184.000	142.000	533.000	111.380	214.100
3	StdDev	2.035	2.002	2.404	5.801	7.725

Table 4. Medium Headform Analysis Summary

Method	Value	Head Length	Head Breadth	Head Circum-	Menton - Sellion	Menton - Top of
*see notes below	Value			ference	Scinon	Head
Delow		(mm)	(mm)	(mm)	(mm)	(mm)
1	Mult.	195.200	151.850	563.500	123.040	N/A
1	Mean	194.858	151.025	563.447	122.081	230.470
1	Median	195.000	151.000	563.000	122.000	230.100
1	StdDev	2.483	2.580	2.836	2.576	6.038
2	Mult.	195.200	152.260	563.500	N/A	230.200
2	Mean	194.434	151.107	563.538	119.738	229.909
2	Median	195.000	151.000	563.000	119.660	229.600
2	StdDev	2.414	2.652	2.863	4.598	2.906
3	Mult.	195.200	151.850	558.140	N/A	N/A
3	Mean	194.188	150.497	558.726	118.808	227.529
3	Median	194.000	150.000	559.000	118.730	227.100
3	StdDev	1.911	2.104	2.300	5.762	8.011

Table 5. Large Headform Analysis Summary

		adioin inai		· · · · · · · · · · · · · · · · · · ·		
Method *see notes below	Value	Head Length	Head Breadth	Head Circum- ference	Menton - Sellion	Menton - Top of Head
below		(mm)	(mm)	(mm)	(mm)	(mm)
1	Mult.	210.700	161.250	595.250	133.170	N/A
1	Mean	206.411	156.315	591.640	128.036	241.059
1	Median	206.000	156.000	590.000	128.000	241.100
1	StdDev	4.288	3.819	7.065	5.127	8.394
2	Mult.	210.700	161.250	595.250	N/A	246.810
2	Mean	206.355	156.645	591.701	126.031	242.610
2	Median	206.000	156.000	590.000	125.550	241.800
2	StdDev	4.523	4.137	7.613	5.608	6.462
3	Mult.	207.840	161.250	595.250	N/A	N/A
3	Mean	205.695	156.746	591.726	123.862	238.299
3	Median	206.000	156.000	590.000	123.970	237.800
3	StdDev	3.728	3.831	5.853	6.457	9.214

Table 6. Clustering of Subjects Based on Multivariate Method

Method *see notes below	Gender of Subjects Small Headform	s: (M)ale (F)emale Medium Headform	(3946 Subjects) Large Headform
1	M:5.1% F:94.9%	M:76.7% F:23.3%	M:97.5% F:2.5%
2	M:4.0% F:96.0%	M:76.1% F:23.9%	M:98.0% F:2.0%
3	M:5.6% F:94.4%	M:73.1% F:26.9%	M:94.9% F:5.1%

Notes for tables 3-6:

- Method 1: Multivariate analysis using head length, head breadth, head circumference, and Menton-Sellion distance.
- Method 2: Multivariate analysis using head length, head breadth, head circumference, and Menton-Top of Head distance.
- Method 3: Multivariate analysis using head length, head breadth, and head circumference.
- "Mult." in value column represents the multivariate analysis results.
- The mean, median, and standard deviation are computed using the cluster of subjects defining the given percent.

5.0 HEAD INERTIAL PROPERTIES

There is an abundance of literature pertaining to the inertial properties of the human head. There is also a large amount of literature pertinent to the inertial properties of anthropomorphic headforms, primarily the Hybrid III dummy. The design values for the headform of the Hybrid III dummy itself represent a compilation of the best available (cadaver) data for midsized human males. Appendix A includes all data found in the literature review of the present study for head mass, head density, and head principal moments of inertia. All Hybrid III data are located at the beginning of the table, followed by all cadaver data.

Except for the direction angles of the principal axes, the inertial properties of the Hybrid III headform will be used as the model for the midsized headform developed in the present study. No additional data have come from any recent studies to improve inertial property specifications for the Hybrid III headform. It is essentially the cadaver data in Appendix A that, collectively, established and corroborated the inertial properties of the current Hybrid III headform.

5.1 Midsized Headform

The headform of the GM ATD 502 crash dummy was designed by Hubbard and McLeod [1974]. [Also, see Hubbard, 1975.] That headform was incorporated without change into the Hybrid III dummy [Foster, et al., 1977; pp 977-981]. The design specifications of Hubbard and McLeod for inertial properties include a mass value of 10.0 lb (4.54 kg) and a moment of inertia I_{yy} about the lateral principal axis of 238 kg-cm" \pm 10 kg-cm" (0.207 in-sec"-in \pm 0.10 in-sec"-in). The design specifications do not include requirements for I_{xx} or I_{zz} or the orientations of their principal axes with respect to an anatomical coordinate system.

The best available inertial property data for the Hybrid III (midsized) headform, as manufactured, are those in the study reported by Kaleps and Whitestone [1988], in which properties of the Hybrid III dummy were experimentally measured. The measured values for mass (9.92 lb) and I_{yy} (240.4 kg-cm") are in good agreement with the Hubbard-McLeod design specifications. Clarification is needed, however, in regard to other Kaleps-Whitestone data. Some of the data are apparently not in good agreement with the widely cited results of McConville, et al. [1980] [and the same study as reported by Kaleps, et al., 1984], for living male subjects as determined by stereophotometric techniques and multiple regression modeling. While head masses are not greatly different--9.92 lb and 9.632 lb, respectively--the reported values for head principal moments of inertia and the orientation of the principal axes are very different. Kaleps and Whitestone determine their principal X-axis, X_p, to be rotated 26.6 degrees (cos⁻¹ 0.89426) downward from the head anatomical reference system (i.e., from the Frankfort plane) while McConville, et al., determine an upward rotation of 36.05 degrees--a difference of about 63 degrees. The principal moments of inertia I_{VV} about the lateral principal axis are found to be similar, as shown below, but there is considerable apparent disagreement between the values for the principal X- and Z-axes. In particular, Kaleps and Whitestone report I_{ZZ} to be much larger than I_{XX} while, conversely, McConville, et al., report I_{XX} to be much larger than I_{ZZ} . In a personal communication with Dr. Ints Kaleps (October 13, 1994) it was learned that the orientations of the principal axes differ in actuality by about 27 degrees, not 63 degrees, and, further, that the principal moments of inertia are actually in reasonably good agreement since the identifications of X_p and Z_p are transposed in the two studies. Specifically, - Z_p , McConville corresponds to $+X_p$, HybIII and $+X_p$, McConville corresponds to $+Z_p$, HybIII. Thus, in terms of McConville's system, while the human (male) principal X-axis is rotated 36.05 degrees upward from the anatomical X-axis (forward), the Hybrid III " X_p -axis" is rotated 63.4 degrees upward. The Z_p -axes--in terms of McConville's system--are similarly different by about 27 degrees, and both are upward through the back of the crown. In relation to the described transposition of axis definitions, I_{xx} and I_{zz} values in the McConville and Kaleps studies must be interpreted inversely. The two tables below, respectively, show the values of principal moments of inertia as reported in the two studies.

PRINCIPAL MOMENTS O	F INERTIA AS REPORTED IN FOR TWO STUDIES
Kaleps and Whitestone	$Ixx = 159.1 \text{ kg-cm}^2 (0.1408 \text{ lb-sec}^2-\text{in})$
(Hybrid III, midsized)	$Iyy = 240.4 \text{ kg-cm}^2 (0.2128 \text{ lb-sec}^2-\text{in})$
	$Izz = 221.0 \text{ kg-cm}^2 (0.1956 \text{ lb-sec}^2-\text{in})$
McConville, et al.	$Ixx = 204.1 \text{ kg-cm}^2 (0.181 \text{ lb-sec}^2-\text{in})$
(midsized living males)	$Iyy = 232.9 \text{ kg-cm}^2 (0.206 \text{ lb-sec}^2-\text{in})$
	$Izz = 150.8 \text{ kg-cm}^2 (0.133 \text{ lb-sec}^2-\text{in})$

	INCIPAL MOMENT OF INERTIA VALUES FOR
THE McCONVILLE AXIS SY	STEM
Kaleps and Whitestone	$Ixx = 221.0 \text{ kg-cm}^2 (0.1956 \text{ lb-sec}^2-\text{in})$
(Hybrid III, midsized)	$Iyy = 240.4 \text{ kg-cm}^2 (0.2128 \text{ lb-sec}^2-\text{in})$
[transposed values]	$Izz = 159.1 \text{ kg-cm}^2 (0.1408 \text{ lb-sec}^2-\text{in})$
McConville, et al.	$Ixx = 204.1 \text{ kg-cm}^2 (0.181 \text{ lb-sec}^2-\text{in})$
(midsized living males)	$Iyy = 232.9 \text{ kg-cm}^2 (0.206 \text{ lb-sec}^2-\text{in})$
· ·	$Izz = 150.8 \text{ kg-cm}^2 (0.133 \text{ lb-sec}^2-\text{in})$

A review of Appendix A indicates that for some of the major experimental studies in which cadaver head principal moments of inertia are measured, $I_{\rm XX}$ is reported to be much greater than $I_{\rm ZZ}$ while others show the opposite relative magnitudes. Specifically, Chandler, et al. [1975], and Reynolds, et al. [1975], have $I_{\rm ZZ} >> I_{\rm XX}$ while Beier, et al. [1980], and Young, et al. [1983], have $I_{\rm XX} >> I_{\rm ZZ}$, in basic agreement with the values for living male subjects in the McConville study. (Young's values were determined with a regression model from stereophotometric measurements made with living female subjects in the same manner as McConville's for living males.)

Reasons for the relatively large discrepancies between values from different studies for I_{xx} and I_{zz} could not be determined in the present study, except as noted above regarding the seeming, but not actual, discrepancy between Kaleps-Whitestone values for the Hybrid III dummy and the values of McConville, et al.,

for living human males. Sectioning of cadavers seems to have been done in the same way in the various studies, but small differences in method could have large effect on principal moments of inertia. Further, there is an inherent sensitivity to experimental conditions in the equations for the direction angles of the principal axes that, in fact, increases without bound as the differences between values of the principal moments of inertia approach zero. Additionally, none of the authors describe the method used for measuring principal moments of inertia and principal axis orientation--a nontrivial experimental endeavor--so it is not possible to Only the papers of Kaleps and assess the accuracy of reported results. Whitestone [1988] and Kaleps, et al. [1984], include schematics that show the principal axes. (The system used in Kaleps, et al. [1984] is, however, the same as was used for the studies by McConville, et al. [1980], and Young [1983].) Thus, a possible explanation for the two groupings of reported values- $I_{XX} >> I_{ZZ}$ and $I_{ZZ} >> I_{XX}$ -that seems likely to be correct is that axes are defined oppositely in various studies, as for the Hybrid III and living human male studies described above. If this is true, then if the McConville system is used [see Kaleps, et al. 1984], it would be correct for each study to use the larger of the reported values, I_{xx} and I_{zz} , for I_{xx} and the smaller for I_{zz} . That is, $I_{xx} >> I_{zz}$, where the X_p axis is approximately through the forehead and the Z_p axis is through the back of the crown.

As the (transposed) principal moments of inertia measured by Kaleps and Whitestone for the Hybrid III are in good agreement with the living human male values of McConville, et al., either set of values can be used. For direction angles of the principal axes, however, the McConville value (36 degrees) will be used for the midsized and large headforms and the Young value (42 degrees) will be used for the small ("female") headform. Support for this recommendation is found in the basic agreement between the cadaver measurement results of Beier, et al. [1980] and the results of McConville, et al., in regard to both the reported direction angles (34 degrees and 36 degrees upward) and the reported relative—and absolute—magnitudes of $I_{\rm XX}$ and $I_{\rm ZZ}$.

No values for headform volume and average density for the Hybrid III headform could be found in the literature. Consequently, the average density of the Hybrid III headform could not be established. Average specific gravities of cadaver heads, however, are reported by several researchers. These values are included in Appendix A. They range from 1.056 to 1.15. (Specific gravity is called "density" in most of the references.)

5.2 Small and Large Headforms

For small and large headforms, the result of Kaleps and Whitestone for head mass (midsized, 9.92 lb) will be supplemented with the results of Mertz, et al. [1989]. Their values for headforms for the small female and the large male are 8.10 lb and 10.90 lb, respectively. Mertz, et al., while providing values for many properties scaled from midsized ("Hybrid III") to small and large, do not include values for head principal moments of inertia for even the Hybrid III headform. It may easily be shown that, for geometric similarity and uniform and equal density, moment of inertia scales as the 5/3rd power of the ratio of the masses or, equivalently, as the 5th power of the ratio of the lengths. [See Bowman, et al., 1977; pg. 75.] Mertz, et al., give head length-scale ratios relative to the midsized male of 0.931 for small females and 1.030 for large males. The fifth powers of these values are

0.6994 and 1.1593, respectively. These scale factors can be multiplied by the Hybrid III values for principal moments of inertia to obtain the values below. The I_{XX} and I_{ZZ} values here are the *transposed*. Kaleps-Whitestone Hybrid III values, as described earlier.

SCALED HYBRID III	Head Principal Moments of Inertia for the		
HEADFORM	McConville Axis System ¹		
Kaleps and Whitestone	$Ixx = 221.0 \text{ kg-cm}^2 (0.1956 \text{ lb-sec}^2-\text{in})$		
(transposed values)	$Iyy = 240.4 \text{ kg-cm}^2 (0.2128 \text{ lb-sec}^2-\text{in})$		
(Hybrid III, midsized)	$Izz = 159.1 \text{ kg-cm}^2 (0.1408 \text{ lb-sec}^2-\text{in})$		
SCALE FACTOR = 1.0			
Scaled Kaleps-Whitestone	$Ixx = 154.6 \text{ kg-cm}^2 (0.1368 \text{ lb-sec}^2-\text{in})$		
values (for small female)	$Iyy = 168.1 \text{ kg-cm}^2 (0.1488 \text{ lb-sec}^2-\text{in})$		
SCALE FACTOR = 0.6994	$Izz = 111.3 \text{ kg-cm}^2 (0.0985 \text{ lb-sec}^2-\text{in})$		
Scaled Kaleps-Whitestone	$Ixx = 256.2 \text{ kg-cm}^2 (0.2268 \text{ lb-sec}^2-\text{in})$		
values (for large male)	Iyy = $278.7 \text{ kg-cm}^2 (0.2467 \text{ lb-sec}^2-\text{in})$		
SCALE FACTOR = 1.1593	$Izz = 184.4 \text{ kg-cm}^2 (0.1632 \text{ lb-sec}^2-\text{in})$		

¹The Xp axis is approximately through the forehead and the Zp axis is through the back of the crown.

5.3 Definitions and Other Considerations

All researchers whose data are presented in Appendix A used essentially the same anatomical coordinate system for the head. The definition of Kaleps and Whitestone [1988] is as follows: The Y-axis unit vector Y is from right tragion to left tragion. The X-axis unit vector X is parallel to a vector that is normal to the Y-axis and passes through right infraorbitale. The X-axis itself passes through the midpoint between right and left tragion, and the Z-axis unit vector is $X \times Y$ (upward). X and Y--or, equivalently, the three points right tragion, left tragion, and right infraorbitale--define the "Frankfort Plane." (The head anatomical coordinate system is sometimes called "Frankfort Horizontal.") Differences between this definition and ones used by other researchers are negligible in regard to use of data from Appendix A. Those differences include: (1) use of right and left auditory meatus instead of right and left tragion for the Y vector; (2) definition of X as a normal to Y that passes through nasion (sellion).

Two additional points regarding the cadaver data in Appendix A need to be made. First, no female cadavers were included in any of the studies done with cadavers. Further, no study identifies data from male cadavers as being for "small," "midsized," or "large" males (or heads). That is, average values presented by the authors are from cadaver pools in which small, midsized, and large heads are all included. It is, therefore, almost a necessity that an assumption be made that "midsized" can be equated with "average." Any other definition would reduce already small sample sizes to an extent that results would have greatly reduced statistical significance.

6.0 LOCATIONS OF THE HEAD CENTER OF GRAVITY AND THE OCCIPITAL CONDYLES PIVOT

Locating the head center of gravity (CG) properly for the small, midsized, and large headforms is important for dynamics studies, including helmet retention studies. In order that the head of the manikin be able to replicate human response reasonably well, this means that its CG location with respect to the head-neck pivot should be reasonably accurate. For static fit studies the location of neither the CG, nor the head-neck pivot, is of significance.

Numerous references have been found that contain data pertinent to properly locating the head center of gravity and the occipital pivot in the headforms designed in the present study. Those data are given in Appendix A. The references in Appendix A begin with ones pertinent to the Hybrid III dummy headform, and references for cadaver studies, or studies in which cadaver data were used, follow. As for inertial properties, Hybrid III headform data for the center of gravity and the occipital pivot will be used for the midsized headform designed in the present study. Here, as for inertial properties, the data presented from cadaver studies are the very data that were used, collectively, to establish and corroborate the design of the current Hybrid III headform. A reanalysis of the available cadaver data would not produce results for the locations of the CG or the occipital condyles that are significantly different from the values adopted for the Hybrid III headform.

In nearly all listed references the same anatomical coordinate system defined previously was used, viz., one in which X and Y define the Frankfort plane and Z is normal to the Frankfort plane at the midpoint of the Y-axis between right and left tragion.

The center of gravity of the head is assumed, or measured, to be on the midsagittal plane--i.e., at Y=0--by all researchers. Nonzero Y_{CG} , whenever measured, is small enough to be negligible. The coordinates of the CG are in nearly every instance given relative to the origin of the anatomical coordinate system. The most common exception to this is identification of the X and Z separations between the CG and the occipital condyles (along the anatomical X-and Z-axes) without accompanying values that locate either the CG or the occipital condyles with respect to the anatomical coordinate system.

The occipital condyles location has been selected as the best for the head-neck pivot for headforms designed in the present study. This is in accordance with the design of the Hybrid III headform. There are two occipital condyles in the human head, separated symmetrically to the left and right of the midsagittal plane. As there is essentially no lateral articulation at this "joint," however--i.e., only pivoting in the midsagittal plane--it is unnecessary to determine Y coordinates for the occipital condyles. Rather, only the X and Z coordinates of the axis of rotation at the occipital condyles need be established. The occipital condyles (and the CG) can be located with respect to any point on the head if the coordinates of that point and the coordinates of the condyles are both known with respect to the anatomical coordinate system (which can be defined absolutely if the laboratory frame (X,Y,Z) coordinates of left and right tragion and right infraorbitale are known).

6.1 Midsized Headform

The design of the Hybrid III headform--originally developed for the GM ATD 502 crash dummy--locates the CG and the head-neck ("occipital condyles") pivot relative to each other and relative to head and face landmarks. [See Appendix A: Hubbard and McLeod, 1974; Hubbard, 1975.] In the anatomical (Frankfort Plane) coordinate system the CG is 1.9 inches above and 0.7 inches forward from the occipital condyles.

There is good agreement between the various authors in regard to the relative locations of the CG and the head-neck pivot in the actual Hybrid III (midsized) headform. In the head anatomical coordinate system the CG is 2.00 inches above and 0.55 inches forward from the head-neck pivot according to Kaleps and Whitestone [1988], Spittle, et al. [1992], and Grewal, et al. [1994]. These values are not in agreement with the design specifications of Hubbard and McLeod. Denton and Morgan [1988] give a value of 1.9 inches for the superior-inferior (Z) separation and a value of 0.7 inches for the anterior-posterior (X) separation. Either of these two sets of values is suitable for the midsized headform.

All values for midsized males tabulated in Mertz, et al. [1989] are identified as being for the Hybrid III dummy. However, these values are, in fact, all taken from cadaver studies and therefore represent midsized males rather than the actual Hybrid III dummy. Mertz, et al., give a value of 1.9 inches for the superior-inferior separation between the head CG and the occipital condylesviz., the design value of Hubbard and McLeod. Mertz, et al., do not give a value for the anterior-posterior separation, but the Hubbard-McLeod specification for the anterior-posterior separation is 0.7 inches.

6.2 Small and Large Headforms

If the Mertz (Hubbard-McLeod) values are used for the midsized headform and if the anterior-posterior separation is scaled in the same manner that Mertz, et al., scale the superior-inferior separation between CG and occipital condyles--viz., on the basis of characteristic dimensions for the skull--the values below are obtained for small females and large males. The Mertz head-dimension scale factors for the large male and small female are 1.030 and 0.931, respectively.

CADAVER DATA (SCALED)	CG to Occipital Superior-Inferior	Condyles Separation Anterior-Posterior
Mertz/Hubbard & McLeod (midsized male, "Hybrid III") SCALE FACTOR = 1.0	1.9 in	0.7 in
Mertz/Hubbard & McLeod (small female) SCALE FACTOR = 0.931	1.8 in	0.65 in
Mertz/Hubbard & McLeod (large male) SCALE FACTOR = 1.030	2.0 in	0.72 in

If the Hybrid III values, 2.0 inches and 0.55 inches, are used instead of the cadaver-based design values (1.9 inches and 0.7 inches), similar scaling would be reasonable. The results, shown below, are not greatly different from those above from scaling of midsized-male cadaver data.

HYBRID III DATA (SCALED)	CG to Occipital Superior-Inferior	Condyles Separation Anterior-Posterior
Hybrid III (midsized male) SCALE FACTOR = 1.0	2.0 in	0.55 in
Small female (using Mertz scale factor) SCALE FACTOR = 0.931	1.9 in	0.51 in
Large male (using Mertz scale factor) SCALE FACTOR = 1.030	2.1 in	0.57 in

7.0 SKIN PROPERTIES

The literature search did not disclose much useful data for skin properties of the human head. Specifically, it has not been possible to determine the friction properties of the scalp, with or without hair, and, further, it has not been possible to establish force-deflection properties of the face and scalp as a function of position on the head. (Frangible face forms are not relevant to the present study.) Information is available, however, for the thickness and composition of skin on the Hybrid III headform. The headform skin specifications for the Hybrid III were established to meet requirements of durability and proper head-acceleration response in drop tests with impact to the forehead. The Hybrid III headform skin will be considered for headforms developed in the present study.

7.1 Friction Properties

The scalp is described [Prasad, 1988] to be 5 to 7 mm (0.20 to 0.28 in) thick including the hair-bearing skin and the layered soft tissues between the skin and the skull. All of the layers of the scalp move together as one. Also, a loose connective tissue layer plus a fibrous membrane cover the bone (periosteum).

Prasad, et al., note the looseness of the scalp on the skull. Neither they nor (apparently) any other researchers have attempted to quantify this looseness. Also, no measure of the friction between the scalp's hair, or the skin of the face, and any contacting surface is given. Neither these authors nor any others quantify the force-deflection characteristics of the scalp (except in the form of constitutive properties, e.g., McElhaney, et al., 1969, and Melvin and Evans, 1971).

Webster and Newman [1976; pp. 233-235] describe qualitative properties, however; viz., that surface friction should be *small* and the coupling of the scalp to the cast aluminum skull of the headform should be *weak*. In a comparison of force-time history responses for impacts to cadaver heads and anthropomorphic headforms, they found that the headform force responses that most nearly replicated cadaver head force responses were for headforms with smooth, low-friction "skin" surfaces and skin that is not fastened to the skull--i.e., skin that is free to slide over the headform surface. Hodgson [1990] also conducted friction (skid) tests for anthropomorphic headforms, but did not include cadaver tests in his study.

The apparent absence of quantitative data for the friction properties of the scalp, and hair, is probably not serious provided that the guidelines of Webster and Newman are followed. Adequate representation of human hair friction characteristics in manikin headforms is probably most important for helmet retention tests. However, proper helmet fit and the design and fit of retention straps are much more important factors than friction between the helmet and the hair. Even if quantitative data for hair friction properties could be found, it would then still be necessary to design the headform scalps in such a way as to replicate these properties. Probably the only ways to accomplish this would be (1) to use a headform covering that has numerous hair plugs or else to put a wig made from human hair, or a suitable substitute, over the headform covering, or

(2) to use a smooth, relative slick headform covering. The latter method is clearly easier, but it requires further study.

7.2 Force-Deflection Properties

Head force-deflection properties may be important for impact studies with Army manikins (or the headforms and necks alone), but the importance in impact studies relevant to helmeted personnel would certainly be much less than in studies for which no helmet is present. Since studies in which impacts of the unhelmeted Army headforms occur are unlikely to be of interest, it is probably not important to have more humanlike head force-deflection properties than in the Hybrid III. In any case, no force-deflection specifications more representative of a human than those for the Hybrid III headform were determined in the present study.

Early work done by Thurlow [1963] established that the shock-absorption properties of the living human scalp may be simulated in anthropomorphic dummies by covering the heads with a 5/32-inch thick layer of cellular silicone rubber. Research conducted since Thurlow's work has determined the best formulation for the skin to be ARL Vinyl Formulation No. PT-4. This is used for the current Hybrid III headform [Howe, et al., 1991; Benson, et al., 1991]. Skin thickness for the Hybrid III varies at positions over the face. It is 1.55 cm at nasion, 1.09 cm at zygoma, and 1.13 cm at maxilla [Gallup, et al., 1988; pg. 332]. Gallup, et al. (ibid), recommend 1.00 cm at nasion, 1.10 cm at zygoma, 1.10 at maxilla, 1.05 cm at subnasale, and 1.10 for the nose. Corresponding specifications for the Hybrid III 5th percent female and 95th percent male crash dummies were not found in the present study, but it may well be that they should be different from the 50th percent dummy specifications in order to satisfy droptest acceleration requirements.

Only very limited head force-deflection data [except for frangible faces: Newman and Gallup, 1984; Allsop, 1993] is available for even the Hybrid III dummy, which is used routinely for impact studies involving automobile occupants, which are unhelmeted. In particular, the forehead covering of the Hybrid III headform is of such composition and stiffness as to allow replication of head acceleration responses in cadaver head (forehead) drop tests. Possibly the first work on cadaver head drop tests was done by Hodgson and Thomas [1972]. Prasad, et al. [ibid; pp. 12-13], report results derived from the work of Hodgson and Thomas, and they find, specifically, that the peak acceleration of the center of gravity of the head should be within a corridor defined by corner points of 230 \pm 42 G for free-fall drops of 330 mm and 293 \pm 42 G for drops of 1060 mm. The headform and headform covering of the Hybrid III dummy satisfy these test criteria.

Mertz, et al. [1989] scaled the response range to obtain values appropriate for "small female" and "large male" headforms. Dividing the Hybrid III acceleration values by a scale factor of 1.030 for "large male" and 0.931 for "small female" and rounding to the nearest 5 G, they obtain lower limit, midpoint, and upper limit values, for drop heights of 14.8 inches, as follows: large male - 220 G, 245 G, and 265 G; small female - 240 G, 270 G, and 295 G.

Two final observations regarding force-deflection properties of the head are made here. First, Hodgson and Thomas [1971] state that impact force for direct

impacts to the heads of bushy-haired individuals can be distributed sufficiently to raise the fracture force level by a significant amount. This would not be a factor for impacts to the helmeted manikin headforms. Secondly, Sakurai, et al. [1993], have demonstrated in headform impact tests, with and without skin, that the influence of headform skin on the maximum acceleration and the HIC value is insignificant, although the presence of the headskin does serve as a low-pass filter on high-frequency elements.

8.0 HEADFORM MODEL DEVELOPMENT

The headform models were developed using a computer-aided design package from Autodesk, Inc. of Sausalito, CA. AutoCAD Release 12 was used in conjunction with the AutoSurf Release 2 surface modeling system to generate the complex splines and surfaces that compose the computer models of the headforms. The AutoCAD software package was chosen for this design task after consideration of its popularity, flexibility, and integrated surface modeling features.

Initially, a medium sized headform was created using anthropometric data corresponding to a 50th percent male from a U.S. Army Natick technical report [Gordon, 1989]. Construction of this headform proceeded with the definition of the headform skin surface first, and later involved the generation of the headform skull surface. The 48 headboard measurements yielded the location of 26 facial landmarks which were transformed into three-dimensional coordinate data. Three orthogonal coordinate axes were drawn in space and their intersection was defined as the origin of the local coordinate system. Data points were entered in reference to this local origin, and the XY and YZ planes of this coordinate system were considered the headboard reference. Head symmetry about the mid-sagittal plane was assumed in the construction of the headform.

The wireframe of the medium headform is pictured in figure 3. The wireframe was started by creating a satisfactory head/facial outline along the mid-sagittal plane. A spline fit was created from the crinion to the menton, and passed through the six other intermediate facial landmarks that lie on the mid-sagittal plane. This outline was supplemented by additional control points as needed to obtain an adequate facial profile. The 26 facial landmarks are circled in figure 4 to illustrate their position in relation to the wireframe construction. The head outline was constructed from two spline curves that were drawn to selected contact points on the horizontal and vertical sections of the headboard. These contact points were approximated in relation to the location of known landmarks and the alignment of the head. The head outline extended down until the level of the frontotemporale landmarks. Both the head and facial outlines were extended down to form the neck until a plane was reached ten inches below the top of the head. This was judged to be adequate for the headform neck representation.

The width of the head was constructed from a spline fit between the tragion landmark and the top of the head. Additional points used in the construction of this curve were deduced from measurements pertaining to the maximum head breadth. Construction features were generally created on the right side of the headform and then mirrored across the mid-sagittal plane for symmetry. The mirroring technique reduces the overall model construction time, ensures symmetry across the mid-sagittal plane, and provides proper mating between

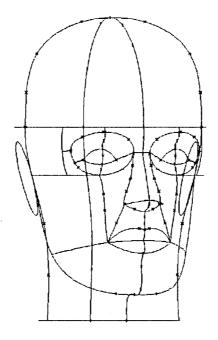


Figure 3. Headform Skin Wireframe

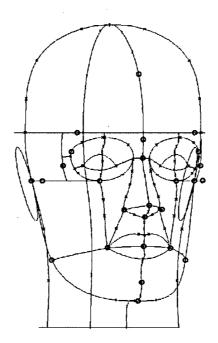


Figure 4. Headform Skin Wireframe with Landmark Indentification

adjoining sections of the headform. The neck width was created by constructing a circle with a diameter calculated from the neck circumference measurement. This circular cross-section would later be blended as a surface to the adjoining regions of the head and face. The jaw line was created as a spline fit through the menton, gonion, and tragion. Additional control points were added to achieve a satisfactory mandibular profile. The facial wireframe was created by relating the zygion, cheilion, alare, ectoorbitale, infraorbitale, and zygofrontale landmarks to the mandibular profile and mid-sagittal plane. Construction splines were created at positions which were proximate to the available facial landmarks, and at positions which characterize a natural point of inflection in the facial curvature. The position of the eyes was determined from the interpupillary breadth measurement and the position of the facial landmarks located around the perimeter of the eye socket. The ears were created as ellipses that were slightly rotated about the tragion landmark. The dimensions of the major and minor axes of the ellipse were decided from the ear length and ear breadth measurements, respectively.

Surface modeling of the headform proceeded during the wireframe construction process as the regions were completed to satisfaction. The headform surfaces were represented using NURBS (Non-Uniform Rational B-Spline) mathematics within the AutoSurf modeling environment. The surfaces were generally created as swept sections of mesh between closed portions of the wireframe. Generation of the surfaces was necessary during the construction of the wireframe to effectively visualize the resulting curvatures. Mesh with a greater density was used in regions with more complex surface curvatures. The headform surface mesh layer is shown in figure 5. This surface mesh can then be transformed into polygon faces that are able to be rendered by the AutoCAD rendering tools. Rendering of the model is accomplished by variable levels of shading that are related to the angle of each polygon face. Polygon faces that are nearly perpendicular to the plane of view are the brightest, while faces that are at an angle away from the plane of view appear darker. The rendering process allows an accurate inspection of the finished surface curvatures, and may reveal discontinuities in the surface model or misalignment between neighboring surface regions. A rendered image of the headform surface is pictured in figure 6.

Considerable effort was expended in attempt to smooth the transition between adjoining facial surfaces. Wireframe splines that were created acted as boundaries between neighboring surface regions. Attempts to join neighboring surfaces into a larger, continuous surface sometimes produced unpredictable results and resulted in a decrease in design flexibility. However, the joining of neighboring surfaces was effective in reducing the shading discontinuities between facial regions. Best rendering results were obtained when the surface display tolerance was reduced to its lowest allowable level. A substantial increase in rendering time comes as a result of the reduced polyface mesh tolerance.

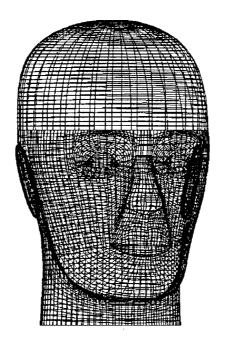


Figure 5. Headform Skin Surface Mesh

Figure 6. Headform Skin Surface Rendering

The surfaces of the medium headform skin model were constructed between splines that were drawn through the landmark points. Therefore, agreement of this model with the 48 linear headboard measurements has been confirmed. Accurate measurement of the various head arcs and circumferences has not yet been accomplished, and agreement of these measurements with the anthropometric data has thus not been confirmed. It is expected that agreement with the anthropometric head arc data will be the most difficult to achieve because the headform surfaces are approximated by intermediate points between the known landmarks in these locations. A level of surface control point editing and trial and error may be necessary to achieve a anthropometrically perfect headform model on the computer.

The medium headform skull model was developed from the medium headform skin model. The skull surface was generated as a reduced scale copy of the headform skin, and was modified to represent the shape of a human skull. The size of the skull relative to the exterior skin surface will result in uniform skin thickness over the skull surface that is consistent with the Hybrid III headform. This skin thickness (0.441±.031 in.) [General Motors, 1978] has been found to provide acceptable biofidelic response of the Hybrid III headform when covering a rigid aluminum skull. The headform skin layer also extends down to form a neckline over the skull model to provide an improved helmet chin strap interface over the Hybrid III headform. The skull design features a curved front surface with slight surface depressions that represent the eye sockets. A rendering of the skull surface is shown in figure 7. Although at the time of this report only the outer surface of the skull has been defined, consideration has been given to the internal details that will facilitate correct mounting of the head load cell and neck The current Hybrid III mounting arrangement will be utilized to maintain the Denton six-axis load cell and Hybrid III neck mounting capability. Positioning of the head center of gravity and occipital condyles pivot in relation to the tragion landmarks has also been addressed. For the medium headform model, the head center of gravity will be located 0.41 in. forward and 1.05 in. above (+0.41,+1.05) the tragion landmark. The occipital condyles pivot location will be located 0.29 in. behind and 0.85 in. below (-0.29,-0.85) the tragion These locations were derived from data obtained from two manikin headform reports [Mertz, 1989], [Hubbard, 1974]. The occipital condyles pivot location will be the pinned connection point between the Denton neck load cell and the Hybrid III neck assembly.

Generation of the small and large sized headforms was accomplished through the non-uniform scaling of the medium sized headform about the three coordinate axes. The scaling values for each direction were determined through a comparison of the head dimensions found for the small and large sized headforms with the dimensions of the existing medium headform. A ratio that related either the small or large headform value to the medium value was formed for each head dimension, and this yielded a sizing multiplier for each dimension. Of the 48

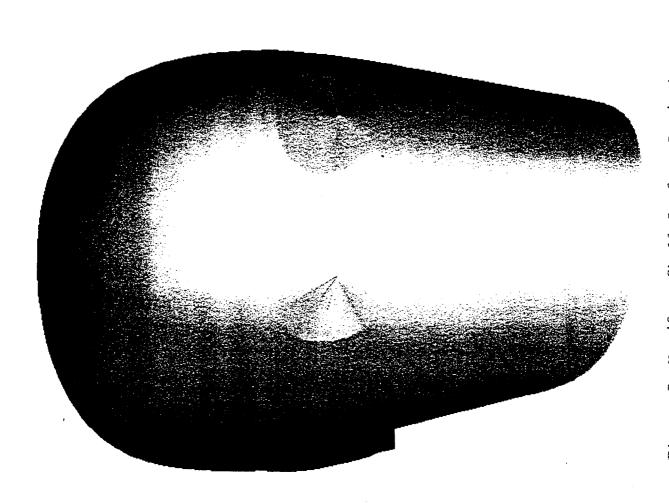


Figure 7. Headform Skull Surface Rendering

headboard measurements tabulated for the three sizes of headforms, 17 measurements are oriented in the X and Z directions, and 9 measurements are oriented in the Y direction. The 5 remaining headboard measurements are not parallel to either the X, Y, or Z axes and were not used in the size comparison. The sizing multipliers for the headboard measurements were summed in each of the three coordinate directions and then a separate average sizing multiplier was calculated for the X, Y, and Z directions. The average sizing multipliers and the standard deviations found in each direction are presented in Table 7.

Table 7. Headform Sizing Multipliers

	Xave	Yave	Zave	Xdev	Ydev	Zdev	
Small	0.948	0.948	0.932	0.017	0.026	0.019	_
Large	1.046	1.043	1.035	0.012	0.019	0.027	

These three average sizing multipliers were used as the coordinate scale factors to deform the medium sized headform to fit the small and large headform anthropometric data. The headform deformation was accomplished through the non-uniform scaling of the medium headform design about a point in the center of the headform that was determined by the location of the tragion landmark. Thus, the small and large headforms resulted from variable reduction or expansion of the medium headform based upon the comparison of the statistically determined headform dimensions. The small and large headform skin surfaces fit the plotted landmark points adequately, but do not pass directly through the individual facial landmarks. This is supported by the calculation of the standard deviation in each coordinate direction which did not exceed 3 % for either headform. For all of the headform surfaces to pass directly through the landmark points, each headform wireframe must be constructed from the designated landmark points. surfaces that are created between sections of the wireframe can be joined to yield a final headform skin surface that passes through each facial landmark. Separate construction of each of the three headforms using their landmark points was not possible due to project time limitations, but this method would produce the best agreement between the actual headform model dimensions and the tabulated anthropometric data. Positions of the center of gravity and occipital condyles pivot for the small and large sized headforms will be determined from studies that were revealed in the UMTRI literature search.

It should be noted that the dimensions of a medium headform that were revealed by the multivariate limit analysis were not used in the determination of the facial landmark positions of the medium headform model. These facial landmarks were located from head dimensions reported for a 50th percent male [Gordon, 1989]. However, the subsequent comparison of the multivariate medium dimensions with the 50th percent male dimensions showed that they are very similar.

The exterior surfaces of the headform skin and skull are described using waterlines and a headform coordinate system. Figure 8 illustrates the position of

the headform sections or waterlines. The sections are located every inch away from the Frankfort plane in both directions, and at the bottom opening of the skin or skull layer. A headform coordinate system is constructed at the reference plane with its origin located at the center of the head, at the midpoint of a line passing through the tragion landmarks on opposite sides of the head. A depiction of the headform coordinate system is shown in figure 9. Tabulated data for the small, medium, and large headform skin and skull surfaces is included in Appendix? One side of each section is described parametrically at increments of ten degrees in Cartesian and polar coordinates. Each headform is symmetrical about the mid-sagittal plane. The apex point is located at the center of the circular hole in the top of the skin or skull layer which allows the lifting ring to thread into the skull.

The AutoCAD software can produce output files that accurately describe the headform surfaces in the Initial Graphics Exchange Specification (IGES) format. The IGES format was developed as a standard for the exchange of drawing information between CAD systems, and can be used effectively in the fabrication and machining of solid models from computer generated designs. Accordingly, the headform computer design model can be copied to floppy disks or a data cartridge in the IGES format and a solid model could be fabricated by a machine shop which has IGES conversion capabilities. This provides a convenient and reliable method of producing solid models of the headforms upon demand.

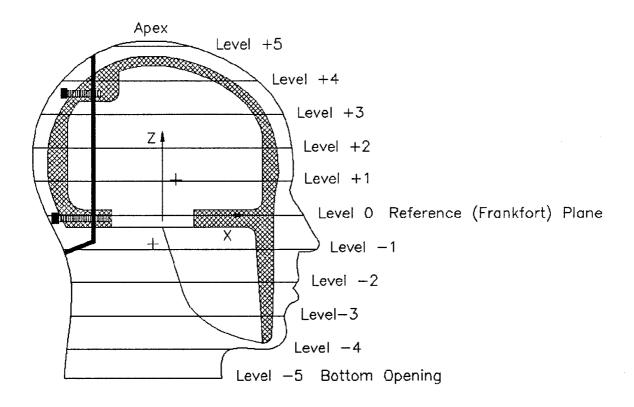


Figure 8. Headform Sections - Mid-Sagittal Plane

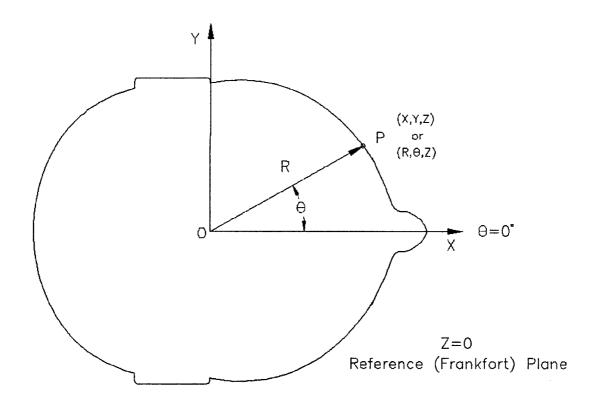


Figure 9. Headform Coordinate System

9.0 HEADFORM FABRICATION ALTERNATIVES

The Phase I program for the development of anthropometric analogous headforms includes headform design and material selection. Fabrication, or the specification of fabrication procedures, recognized as an essential aspect of the development of usable headforms, is not included in Phase I. Conrad Technologies, Inc. (CTI), however, does have experience in the fabrication of manikin components and is cognizant of the various fabrication procedures that are available. To accomplish fabrication, the transferral of the computer-generated surfaces of the design into either a mold, a physical model or a prototype is a key step in the fabrication process. Several current fabrication technologies which are pertinent to the construction of the headform models have been explored.

There are many procedures that are available to transfer a computer-generated surface of an object, such as the headform, into an actual physical embodiment having the same surface profiles as the computer model. In general, there are two classifications of fabricating procedures. The first classification being the more conventional techniques of programming a machine to remove unwanted material from a block of material and thus, shaping the machined model. The second classification being procedures that build a model or prototype by adding or building up thin layers of material in accordance with the corresponding section of the computer-generated surfaces.

The material removal techniques require the programming of the tool path of the cutter and in some cases requires specialized tooling. Tool path programs are available to transfer the computer-generated surface into actual paths of the cutting tool. In cases where the product requires processing or curing at an elevated temperature in the mold, machining of the mold out of aluminum or steel may be a requirement.

The material build-up procedures normally utilized a laser or high-intensity light source in order to contour sections within the model and to successively contour sections on top of one another in order to build up a model or prototype. There are four laser fabricating procedures described below.

9.1 Stereolithography

Stereolithography is a commercial process utilizing a UV laser to cure thin sections of a photosensitive polymer. The laser traces and cures individual cross-sectional elements (about 0.1 mm thick) of the prototype. A platform is positioned in a bath of photosensitive polymer at 0.1 mm below the surface of the polymer and the laser is then made to trace and cure the first 0.1 mm thick section. The platform is then proved a small distance further into the bath

(approximately 0.1 mm) and the laser traces and cures a second layer of material on top of the first. Successive layers are traced and cured until the model is complete. Scan speeds may be as high as 350 in./sec. thus allowing rather rapid prototyping. Current photopolymers have good dimensional accuracy and toughness although some care is required in selecting process parameters. Scans are driven by CAD software files with stereolithography "STL" filename extensions.

9.2 Selective Laser Sintering

Selective Laser Sintering (SLS) is a process that fuses powdered material into rigid solids. In selective laser sintering, prototype parts are produced by fusing successive thin layers of a fusible powder onto the previous layer in order to build up the model. A CO laser is used to scan and heat a selective region with powder being present and causing the powder to melt and fuse in the desired location and providing a build-up of the model.

9.3 Directed Light Fabrication

Directed light fabrication (DLF) is a process in which metal powders are projected at the focal point of a Nd:YAG laser causing the metal powder to fuse and by selectively fusing additional material allows the building of dense 3-D objects to within a few thousands of an inch of the final tolerance. Most any metal, including 300 and 400 series stainless steel, tungsten, nickel aluminies and molybdenum disilicide, copper and aluminum, can be used to fabricate a part.

9.4 Laminated Object Manufacturing

Laminated object manufacturing is accomplished by utilizing a laser to trace and cut out cross-sectional layers from a thin sheet of material such as foil, paper or plastic. These thin sections are then assembled one on top of another to form the model or prototype.

10.0 CONCLUSIONS

The completion of Phase I has resulted in several key points of interest concerning headform design.

The methodology used for characterizing extremes of population in the anthropometric study was different than conventional multivariate analysis methods. Methods such as the bivariate normal distribution model [Churchill, 1978] and principal components analysis [Zehner, 1992] presume a normal population distribution and require a degree of judgment to obtain design limits. The multivariate limit analysis that was used in this project leads to the design limits directly.

The multivariate limit analysis led to the calculation of average probability densities during the iterative algorithm. The maximum average probability density identifies the size of a single headform that would best represent the measured population. The maximum average probability density was found at a point which corresponds to the following values for the independent variables of method 1.

Head Length(mm)	Head Breadth(mm)	Head Circumference(mm)	Menton-Sellion(mm)
195.20	149.50	557.15	121.50

Comparison of the headform dimensions revealed from the multivariate limit analysis with the dimensions of the Hybrid III family has produced some interesting conclusions. All multivariate limit analysis results were found from the ANSUR database which included both male and female military subjects. The Hybrid III family was developed by the Department of Transportation and the headforms were designed from exclusively male or exclusively female civilian anthropometric data. The three headform dimensions that are commonly used in relative size comparison are head circumference, head breadth, and head length. Values of these key parameters for a small adult female, 50th percentile male Hybrid III, and large adult male are compared to the corresponding values obtained from the multivariate limit analysis in Table 8.

Table 8. Comparison of Hybrid III Headform Dimensions with Multivariate

Analysis Results using Method 1.

All	arysis iccsuri	s using wice	nou 1.			
	Hybrid III Small Adult Female	Multivariate Analysis Small	Hybrid III 50th %tile Male	Multivariate Analysis Medium	Hybrid III Large Adult Male	Multivariate Analysis Large
Length	7.20	7.32	7.75	7.69	7.95	8.30
Breadth	5.71	5.60	6.06	5.98	6.14	6.35
Circumference	21.00	21.19	22.60	22.19	23.40	23.44

Note: (All dimensions are given in inches.)

In general, the sizes of the headforms that were produced by the multivariate limit analysis are larger than the Hybrid III family of headforms. However, the medium multivariate dimensions are slightly smaller than the 50th percentile male Hybrid III. This could have resulted from the inclusion of female subjects in the ANSUR anthropometric survey, which compose approximately a quarter of the subjects selected for the medium sized headform. Additionally, the multivariate analysis was performed on the ANSUR survey data which was acquired from 1987-1988, while the Hybrid III sizing was performed during the early 1970's. The more recent ANSUR data source may be more representative of the current population, and the development of the Automated Headboard Device may have provided more accurate measurement of head and face features.

Improvements upon the biofidelity and durability of the current Hybrid III headform has also been addressed. The extension of the headform skin layer down to the neck level provides an improved helmet chin strap interface, and reduces the stress concentrations and skin deterioration found in the chin region. Alternative headform mounting and access concepts have been presented in the Phase II proposal. These concepts aim to eliminate the skin discontinuity that is caused by the access cover of the Hybrid III headform, provide greater access to the enclosed test instrumentation, and simplify the task of connecting the headform to the Hybrid III neck assembly.

The ANSUR anthropometric data used in the Phase I analysis can be considered superior to other anthropometric data sources for headform design because of its facial landmark data. The location of 26 landmarks allow for the accurate facial representation on each of the headforms, and facial detail has been proven to be useful in fit and retention assessment of goggles, masks, and other face mounted systems. Other headform designs do not locate the center of the pupil, or are deficient in eye, nose, and mouth detail.

Information learned from the literature search has also revealed that the headform skin properties are the most important factors in determining the head impact response. The thickness and material properties of the current Hybrid III skin specification have been selected to also be the skin specification for the Phase I headform specification. However, different applications of the headform may require the need for variable skin thickness and properties, and an additional review of skin flesh requirements is needed.

Future work recommendations:

• The multivariate analysis developed during this effort shows the promise of more general applicability. Several avenues of research pertaining to equipment, workspace and protective gear design remain unexplored. Continuing effort in extending the analysis is highly desirable. For example, a

variation on the multivariate limit analysis would be to compute a product of independent variables for each subject and then divide the subjects into three groups (small, medium, large) based on their products. Using the multivariate limit analysis method, it would then be possible to determine the headform measurements by maximizing the average probability density of each group.

- Review the selection of headform sizes developed in this program and finalize
 the anthropometric and biomechanical specifications for these headform sizes.
 The specifications will be reviewed for proper representation of sample
 population, complete definition of headform requirements, biofidelic
 adequacy, testing requirements, performance standards, fabrication
 requirements and adequacy.
- Review and finalize skull and headform surfaces developed during this phase as required to satisfy the aforementioned specifications.
- Using the finalized headform surface, fabricate full scale prototypes of the surfaces for subsequent inspection and evaluation. This inspection provides an opportunity to determine if the computer generated files for the surfaces and the fabrication techniques provide adequate results in accordance with the aforementioned specifications. In addition, it provides the opportunity for an overall visual inspection of the surfaces.
- Review design concepts developed to improve the assembly, access, fabrication, and related design attributes of the headform while retaining all anthropometric and biomechanical requirements. Based on this review, revise and/or develop alternative design concepts.
- Once a final design concept is selected and shown to meet all specifications such as total mass, mass distribution, impact strength, and structural dynamics, the fabrication and testing of the headforms can be initiated.

11.0 REFERENCES

- 1969. Head Protection for the Military Aviator. National Academy of Sciences-National Research Council, Washington, D.C. 26 p. Sponsor: Army Natick Laboratories, Natick, Mass.
- 1986. Human Factors Society. 30th Annual Meeting. Proceedings. Volume I. Human Factors Society, Santa Monica, Calif. 758 p.
- 1988. Anthropometry and Mass Distribution for Human Analogues. Volume I: Military Aviators. Final report. Air Force Department, Washington, D.C./ Navy Department, Washington, D.C./ Army Department, Washington, D.C. 74 p. Report No. AAMRL-TR-88-010/ NAMRL-1334/ NADC-88036-60/ NBDL 87R003/ USAFSAM-TR-88-6/ USAARL 88-5.
- 1991. Vehicle Occupant Restraint Systems and Components, Second Edition. A compilation of SAE, ASTM and FMVSS standards, recommended practices, and test methods. Society of Automotive Engineers, Warrendale, Pa. 370 p. Report No. SAE HS-13.
- 1991. SAE Information Report, SAE J1460 MAR85. Human Mechanical Response Characteristics. 6 p. Report of the Motor Vehicle Safety Systems Testing Committee. 1991 SAE handbook, volume 4, On-highway vehicles and off-highway machinery. Society of Automotive Engineers, Inc. Warrendale, Pa. 1606 p. 1985-1991. Pp. 4.34.218-4.34.223.
- 1993. Guidelines for Evaluating Child Restraint System Interactions with Deploying Airbags. Society of Automotive Engineers, Warrendale, Pa. 22 p. Report No. SAE J2189.
- 1993. SAE Recommended Practice, SAE J833 MAY89. Human Physical Dimensions. 4 p. Report of the Human Factors Technical Committee. 1993 SAE handbook, volume 4, On-highway vehicles and off-highway machinery. Society of Automotive Engineers, Inc. Warrendale, Pa. 1985-1993. Pp. 40.368-4.40.371.
- Abrams, T. S.; Kaleps, I.; Brinkley, J. W. 1988. The AAMRL Biodynamics Data Bank. Summary report. Systems Research Laboratories, Inc., Dayton, Ohio/ Air Force, Wright-Patterson AFB, Ohio. 72 p. Report No. AAMRL-TR-88-037.
- Alexander, M.; McConville, J. T.; Tebbetts, I. 1979. Anthropometric Sizing, Fit-Testing and Evaluation of the MBU-12/P Oral Nasal Oxygen Mask. Anthropology Research Project, Inc., Yellow Springs, Ohio. 33 p. Sponsor: Aerospace Medical Research Laboratory, Aerospace Medical Division, AFSC, Wright-Patterson AFB, Ohio. Report No. AMRL-TR-79-44.
- Allsop, D. "L" 1993. Skull and Facial Bone Trauma -Experimental Aspects. Collision Safety Engineering, Inc., Orem, Utah. 21 p. Nahum, A. M., and Melvin, J. W., eds. Accidental Injury: Biomechanics and Prevention. New York, Springer-Verlag New York, Inc., 1993. Pp. 247-267.

- Andersson, T.; Larsson, P.-O.; Sandberg, U. 1993. Chin Strap Forces in Bicycle Helmets. Statens Provningsanstalt, Boraas, Sweden. 30 p. Report No. SP Report 1993:42.
- Annis, J. F.; Gordon, C. C. 1988. The development and Validation of an Automated Headboard Device for Measurement of Three-Dimensional Coordinates of the Head and Face. Final report. Anthropology Research Project, Inc., Yellow Springs, Ohio. 200 p. Sponsor: Army Natick Research R & D Center, Mass. Report No. NATICK/TR-88/048.
- Aoki, M. Introduction to Optimization Techniques. New York, The Macmillan Co. 1971, 335 p.
- Backaitis, S. H.; Mertz, H. J., eds. 1994. Hybrid III: The First Human-Like Crash Test Dummy. Society of Automotive Engineers, Warrendale, Pa. 838 p. Report No. SAE PT-44.
- Barter, J. T.; Alexander, M. 1956. A Sizing System for High Altitude Gloves. 28 p. Aero Medical Laboratory. Wright Air Development Center, Air Research and Development Command, Wright-Patterson AFB, Ohio. Report No. WADC Technical Report 56-599.
- Bartol, A. M.; Kaleps, I. 1988. The Development of Segment Based Axis Systems for the Air Force Advanced Dynamic Anthropomorphic Manikin (ADAM). Systems Research Laboratories, Inc., Dayton, Ohio/ Air Force Armstrong Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio. 8 p. International Technical Conference on Experimental Safety Vehicles. Eleventh. [Proceedings.] Washington, D.C., NHTSA, Nov 1988. Pp. 346-353.
- Beecher, R. M. 1986. Computer Graphics and Shape Diagnostics. University of Dayton Research Institute. 5 p. Human Factors Society. 30th Annual Meeting. Proceedings. Volume 1. Dayton, Ohio, Human Factors Society, 1986. Pp. 211-215. Sponsor: Aerospace Medical Research Laboratory, Aeronautical Systems Division, Wright-Patterson AFB, Ohio. (1986, Human Factors Society, proceedings, 30th annual meeting).
- Beier, G.; Schuller, E.; Schuck, M.; Ewing, C. L.; Becker, E. D.; Thomas, D. J. 1980. Center of Gravity and Moments of Inertia of Human Heads. Muenchen Universitaet, Institut fuer Rechtsmedizin, Germany FR/ Naval Biodynamics Laboratory, New Orleans, La. 11 p. Cotte, J. P. and Charpenne, A., eds. International IRCOBI Conference on the Biomechanics of Impacts. 5th. Proceedings. Bron, IRCOBI, 1980. Pp. 218-228. Sponsor: Office of Naval Research, Washington, D.C.
- Bell, N. A.; Donelson, S. M.; Wolfson, E. 1991. An Annotated Bibliography of U.S. Army Natick Anthropology (1947-1991). Final report. Geo-Centers, Inc., Newton Centre, Mass. 185 p. Sponsor: Army Natick Research R & D Center, Mass. Report No. NATICK/TR-91/044.
- Benson, B. R.; Perl, T. R.; Smith, G. C.; Planath, I. 1991. Lateral Load Sensing Hybrid III Head. Collision Safety Engineering, Inc., Orem, Utah/Volvo Car Corporation, Goeteborg, Sweden. 10 p. Stapp Car Crash Conference.

- Thirty-fifth. Proceedings. Warrendale, SAE, Nov 1991. Pp. 279-288. Report No. SAE 912908.
- Bishop, P. J.; Wells, R. 1986. The Hybrid III Anthropometric Neck in the Evaluation of Head First Collisions. Waterloo University, Ontario, Canada. 10 p. Passenger Comfort, Convenience and Safety: Test Tools and Procedures. Warrendale, Society of Automotive Engineers, Feb 1986. Pp. 131-140. Sponsor: Sport Canada; Sport Medicine, Ontario, Canada. Report No. SAE 860201.
- Bowman, B. M.; Robbins, D. H.; Bennett, R. O. 1979. MVMA Two-Dimensional Crash Victim Simulation Tutorial System: Self-Study Guide. Final report. Highway Safety Research Institute, Ann Arbor, Mich. 397 p. Sponsor: Motor Vehicle Manufacturers Association, Detroit, Mich. Report No. UM-HSRI-77-18-1/ UM-HSRI-79-7.
- Bowman, B. M.; Schneider, L. W. 1980. Simulation Analysis of Head/Neck Impact Responses for Helmeted and Unhelmeted Motorcyclists. Final Report. Highway Safety Research Institute, Ann Arbor, Mich. 418 p. Sponsor: Insurance Institute for Highway Safety, Washington, D.C. Report No. UM-HSRI-80-26.
- Bowman, B. M.; Schneider, L. W.; Lustick, L. S.; Anderson, W. R.; Thomas, D. J. 1984. Simulation Analysis of Head and Neck Dynamic Response. Michigan University, Ann Arbor, Transportation Research Institute/Naval Biodynamics Laboratory, New Orleans, La. 33 p. Stapp Car Crash Conference. Twenty-Eighth. Proceedings. Warrendale, Society of Automotive Engineers, Nov 1984. Pp. 173-205 Also published in SAE Transactions 1984. Volume 93. Warrendale, SAE, 1985. Sponsor: Naval Medical Research and Development Command, Bethesda, Md. Report No. SAE 841668.
- Carter, R. M. 1992. A New Generation of U. S. Army Flight Helmets. Army School of Aviation Medicine, Fort Rucker, Ala. 5 p. Aviation, Space, and Environmental Medicine, Vol. 63, No. 7, July 1992, pp. 629-633.
- Chandler, R. F.; Clauser, C. E.; McConville, J. T.; Reynolds, H. M.; Young, J. W. 1975. Investigation of Inertial Properties of the Human Body. Final Report. Air Force Systems Command, Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio/ Civil Aeromedical Institute, Oklahoma City, Okla./ Webb Associates, Inc., Yellow Springs, Ohio. 170 p. Sponsor: National Highway Traffic Safety Administration, Washington, D.C. Report No. DOT/HS 801 430/ AMRL-TR-74-137.
- Chandler, R. F.; Young, J. (1981) Uniform Mass Distribution Properties and Body Size Appropriate for the 50 Percentile Male Aircrewmenber During 1980-1990. Federal Aviation Administration, Mike Monroney Aeronautical Center, Oklahoma City, Okla. 20 p. Report No. AAC-119-81-4.
- Cheverud, J.; Lewis, J. L.; Bachrach, W.; Lew, W. D. 1983. The Measurement of Form and Variation in Form: an Application of Three-Dimensional Quantitative Morphology by Finite-Element Methods. Department of Anthropology, Northwestern University, Evanston, Illinois. 15 p. American Journal of Physical Anthropology, Vol. 62, pp. 151-165.

- Cheverud, J.; Gordon, C. C.; Walker, R. A.; Jacquish, C.; Kohn, L.; Moore, A.; Yamashita, N. 1990. 1988 Anthropometric Survey of US Army Personnel: Bivariate Frequency Tables. Final report. Northwestern University, Evanston, Ill. 286 p. Sponsor: Army Natick Research R & D Center, Mass. Report No. NATICK/TR-90/031.
- Cheverud, J.; Gordon, C. C.; Walker, R. A.; Jacquish, C.; Kohn, L.; Moore, A.; Yamashita, N. 1990. 1988 Anthropometric Survey of US Army Personnel: Correlation Coefficients and Regression Equations. Part 1: Statistical Techniques, Landmark, and Measurement Definitions. Final report. Northwestern University, Evanston, Ill. 76 p. Sponsor: Army Natick Research R & D Center, Mass. Report No. NATICK/TR-90/032.
- Cheverud, J.; Gordon, C. C.; Walker, R. A.; Jacquish, C.; Kohn, L.; Moore, A.; Yamashita, N. 1990. 1988 Anthropometric Survey of US Army Personnel: Correlation Coefficients and Regression Equations. Part 2: Simple and Partial Correlation Tables Male. Final report. Northwestern University, Evanston, Ill. 267 p. Sponsor: Army Natick Research R & D Center, Mass. Report No. NATICK/TR-90/033.
- Cheverud, J.; Gordon, C. C.; Walker, R. A.; Jacquish, C.; Kohn, L.; Moore, A.; Yamashita, N. 1990. 1988 Anthropometric Survey of US Army Personnel: Correlation Coefficients and Regression Equations. Part 3: Simple and Partial Correlation Tables Female. Final report. Northwestern University, Evanston, Ill. 266 p. Sponsor: Army Natick Research R & D Center, Mass. Report No. NATICK/TR-90/034.
- Cheverud, J.; Gordon, C. C.; Walker, R. A.; Jacquish, C.; Kohn, L.; Moore, A.; Yamashita, N. 1990. 1988 Anthropometric Survey of US Army Personnel: Correlation Coefficients and Regression Equations. Part 4: Bivariate Regression Tables. Final Report. Northwestern University, Evanston, Ill. 305 p. Sponsor: Army Natick Research R & D Center, Mass. Report No. NATICK/TR-90/035.
- Cheverud, J.; Gordon, C. C.; Walker, R. A.; Jacquish, C.; Kohn, L.; Moore, A.; Yamashita, N. 1990. 1988 Anthropometric Survey of US Army Personnel: Correlation Coefficients and Regression Equations. Part 5: Stepwise And Standard Multiple Regression Tables. Final report. Northwestern University, Evanston, Ill. 155 p. Sponsor: Army Natick Research R & D Center, Mass. Report No. NATICK/TR-90/036.
- Churchill, E.; Truett, B. 1957. Metrical Relations among Dimensions of the Head and Face. Wright Air Development Center, Wright-Patterson Air Force Base, Ohio. 127 p. WADC Technical Report 52-321.
- Churchill, E.; McConville, J. T. 1976. Sampling and Data Gathering Strategies for Future USAF Anthropometry. Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio. Technical Report AMRL-TR-74-102 (AD A025 240).
- Churchill, E.; Kikta, P.; Churchill, T. 1977. The AMRL Anthropometric Data Bank Library: Volumes I-V. Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio. Technical Report AMRL-TR-77-1 (AD A047 314).

Churchill, E.; Churchill, T.; McConville, J. T.; White, R. M. 1977. Anthropometry of Women of the U.S. Army - 1977. Report no. 2 - the Basic Univariate Statistics. Technical report. Webb Associates, Inc., Yellow Springs, Ohio/ Army Natick Research and Development Command, Mass. 289 p. Report No. CEMEL-173/ NATICK/TR-77/024.

Churchill, E. 1978. Statistical Considerations in man-Machine Designs. Anthropometric Source Book. Volume I: Anthropometry For Designers. [Chapter IX] Churchill, E.; Laubach, L. L.; McConville, J. T.; Tebbetts, I., eds. 1978. Webb Associates, Inc., Yellow Springs, Ohio. 62 p. Sponsor: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, Tex. Pp. IX.1-IX.62. Report No. S-479/ NASA RP-1024. (Churchill, et al., 1978, Anthropometric source book, Vol. I).

Churchill, E.; Laubach, L. L.; McConville, J. T.; Tebbetts, I., eds. 1978. Anthropometric Source Book. Volume I: Anthropometry For Designers. Webb Associates, Inc., Yellow Springs, Ohio. 613 p. Sponsor: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, Tex. Report No. S-479/ NASA RP-1024.

Churchill, E.; Churchill, T.; Downing, K.; Erskine, P.; Laubach, L. L.; McConville, J. T. 1978. Anthropometric Source Book. Volume II: Handbook of Anthropometric Data. Webb Associates, Inc., Yellow Springs, Ohio. 424 p. Sponsor: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, Tex. Report No. S-479/ NASA RP-1024.

Churchill, T.; Churchill, E.; McConville, J. T.; White, R. M. 1977. Anthropometry of Women of the U.S. Army - 1977. Report no. 3 - Bivariate Frequency Tables. Technical report. Webb Associates, Inc., Yellow Springs, Ohio/ Army Natick Research and Development Command, Mass. 352 p. Report No. CEMEL-174/ NATICK/TR-77/028.

Ciano, D. C. Biomechanics of Bone and Tissue: A Review of Material Properties and Failure Characteristics, SAE 861923.

Claus, W. D., Jr. 1976. Bioengineering Considerations in the Design of Protective Headgear. Army Natick Research and Development Command, Clothing, Equipment, and Materials Laboratory, Mass. 8 p. Journal of Biomechanical Engineering, Vol. 99, No. 1, Feb 1977, pp. 20-25. Report No. ASME 76-WA/Bio-8.

Clauser, C. E.; McConville, J. T.; Young, J. W. 1969. Weight, Volume, and Center of Mass of Segments of the Human Body. Air Force Systems Command, Aerospace Medical Research Laboratories, Wright-Patterson AFB, Ohio/ Antioch College, Yellow Springs, Ohio/ Civil Aeromedical Research Institute, Oklahoma City, Okla. 106 p. Sponsor: National Aeronautics and Space Administration, Washington, D.C. Report No. AMRL-TR-69-70.

Damon, A.; Randall, F. E. 1944. Physical Anthropology in the Army Air Forces. Air Force Systems Command, Aerospace Medical Research Laboratories, Wright-Patterson AFB, Ohio. 24 p. American Journal of Physical Anthropology, Vol. 2, No. 3, Sept 1944, pp. 293-316.

- Dempster, W. T. 1955. Space Requirements of the Seated Operator. Michigan University, Ann Arbor. 274 p. Sponsor: Air Research and Development Command, Wright Air Development Center, Wright-Patterson AFB, Ohio. Report No. WADC Technical Report 55-159.
- Deng, Y.-C. 1989. Anthropomorphic Dummy Neck Modeling and Injury Considerations. General Motors Corporation, Research Laboratories, Engineering Mechanics Department, Warren, Mich. 16 p. Accident Analysis and Prevention, Vol. 21, No. 1, Feb 1989, pp. 85-100.
- Denton, R. A.; Morgan, C. R. 1988. An Overview of Existing Sensors for the Hybrid III Anthropomorphic Dummy. Denton, Robert A., Inc. 11 p. International Technical Conference on Experimental Safety Vehicles. Eleventh. [Proceedings.] Washington, D.C., NHTSA, Nov 1988. Pp. 353-363.
- Donelson, S. M.; Gordon, C. C. 1991. 1988 Anthropometric Survey of U.S. Army Personnel: Pilot Summary Statistics. Final Report. Geo-Centers, Inc., Newton Centre, Mass. 614 p. Sponsor: Army Natick Research R & D Center, Mass. Report No. NATICK/TR-91/040.
- Ewing, C. L.; Thomas, D. J. 1972. Human Head and Neck Response to Impact Acceleration. Naval Aerospace Medical Research Laboratory, Pensacola, Fla. 375 p. Sponsor: Army Medical Research and Development Command, Va.; Navy Department, Bureau of Medicine and Surgery, Washington, D.C.; Office of Naval Research, Medical and Dental Division, Washington, D.C.; National Highway Traffic Safety Administration, Washington, D.C. Report No. NAMRL Monograph 21/USAARL 73-1.
- Ewing, C. L.; Thomas, D. J. 1973. Torque Versus Angular Displacement Response of Human Head to -Gx Impact Acceleration. Naval Aerospace Medical Research Laboratory, New Orleans, La. 34 p. Stapp Car Crash Conference. Seventeenth. Proceedings. Society of Automotive Engineers, New York, 1973. Pp. 309-342. Report No. SAE 730976.
- Foster, J. K.; Kortge, J. O.; Wolanin, M. J. 1977. Hybrid III A Biomechanically-Based Crash Test Dummy. General Motors Corporation, Safety Research and Development Laboratory, Milford, Mich. 42 p. Stapp Car Crash Conference. Twenty-first. Proceedings. Warrendale, Society of Automotive Engineers, 1977. Pp. 973-1014. Report No. SAE 770938.
- Frey, E. J.; Theobald, C. E., Jr. 1980. Cost/Benefit Study of Effects of Using Several Headform Sizes in Testing Motorcycle Helmets under Federal Motor Vehicle Safety Standard 218. Final report (Task I) H.H. Aerospace Design Company, Inc., Bedford, Mass. 45 p. Sponsor: National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.; Small Business Administration, Region I, Boston, Mass. Report No. DOT/HS 805 753/ MVSS 218.
- Gallup, M. B.; Hallgrimsson, B. H.; Cotton, C. E.; Smith, T. A.; Newman, J. A.; Dalmotas, D. J. 1988. The Development of an Improved ATD Headform with a Frangible Facial Insert. Biokinetics and Associates Ltd., Ottawa, Ontario, Canada/ Canada, Transport Canada, Ottawa, Ontario. 17 p. International IRCOBI Conference on the Biomechanics of Impacts. 1988. Proceedings. Bron, IRCOBI, 1988. Pp. 327-343.

- Gallup, B.; Gibson, T.; Pedder, J.; Ranger, N.; Newman, J.; Hidson, D. 1989. Anthropometry: A Look at Six Techniques for Monitoring 3-D Human Shape. Biokinetics and Associates, Ltd., Ottawa, Canada/ Canadian Defence Research Establishment, Ottawa. 8 p. SOMA, Vol. 3, No. 2, 1989, pp. 35-42.
- General Motors Corporation. Hybrid III An Advanced Anthropomorphic Crash Test Dummy. Current Product Engineering, General Motors Technical Center, Warren, Mich. Parts list, design drawings, optional transducers. Approximately 500 p. Parts list dated 1983. Design drawings dated 1978.
- Gifford, E. C.; Provost, J. R.; Lazo, J. 1965. Anthropometry of Naval Aviators 1964. Naval Air Engineering Center, Aerospace Crew Equipment Laboratory, Philadelphia, Pa. 111 p. Sponsor: Navy Department, Bureau of Naval Weapons, Washington, D.C.; Navy Department, Bureau of Medicine and Surgery, Washington, D.C. Report No. NAEC-ACEL-533.
- Gilchrist, A.; Mills, N. J.; Khan, T. 1988. Survey of Head, Helmet and Headform Sizes Related to Motorcycle Helmet Design. Birmingham University, England. 18 p. Ergonomics, Vol. 31, No. 10, Oct 1988, pp. 1395-1412. Sponsor: Great Britain Department of Trade and Industry.
- Gilchrist, A.; Mills, N. J. 1992. Critical Assessment of Helmet Retention System Test Methods. Birmingham University, School of Metallurgy and Materials, England. 12 p. International IRCOBI Conference on the Biomechanics of Impacts. 1992. Proceedings. Bron, IRCOBI, 1992. Pp. 25-36.
- Goldsmith, W.; Deng, Y. C.; Merrill, T. H. 1984. Numerical Evaluation of the Three-Dimensional Response of a Human Head-Neck Model to Dynamic Loading. California University, Berkeley, Department of Mechanical Engineering/ Ampex Corporation, Redwood City, Calif. 17 p. Mathematical Simulation of Occupant and Vehicle Kinematics. Warrendale, Pa., SAE, May 1984. Pp. 79-95. Sponsor: National Institutes of Health, Bethesda, Md. Report No. SAE 840861.
- Gordon, C. C.; Churchill, T.; Clauser, C. E.; Bradtmiller, B.; McConville, J. T.; Tebbetts, I.; Walker, R. A. 1989. 1988 Anthropometric Survey of U.S. Army Personnel Summary Statistics. Interim report. Anthropology Research Project, Inc., Yellow Springs, Ohio. 329 p. Sponsor: Army Natick Research R & D Center, Mass. Report No. NATICK/TR-89/027.
- Gordon, C. C.; Churchill, T.; Clauser, C. E.; Bradtmiller, B.; McConville, J. T.; Tebbetts, I.; Walker, R. A. 1989. 1988 Anthropometric Survey of U.S. Army Personnel Methods and Summary Statistics. Final report. Anthropology Research Project, Inc., Yellow Springs, Ohio. 652 p. Sponsor: Army Natick Research R & D Center, Mass. Report No. NATICK/TR-89/044.
- Grewal, D. S.; Pavel, J. G.; Khatua, T. P. 1994. Simulation of BioSID Head-Neck Motions. Failure Analysis Associates, Palo Alto, Calif. 12 p. Safety Technology. Warrendale, SAE, 1994. Pp. 79-90. Report No. SAE 940909.
- Haley, J. L., Jr.; Turnbow, J. W. 1966. Impact Test Methods and Retention Harness Criteria for U.S. Army Aircrewman Protective Headgear.

- Flight Safety Foundation, Inc., Aviation Safety Engineering and Research, Phoenix, Ariz. 55 p. Sponsor: Army Aviation Materiel Laboratories, Fort Eustis, Va. Report No. USAAVLABS Technical Report 66-29/ AvSER 65-15.
- Haley, J. L., Jr. 1971. Analysis of U.S. Army Helicopter Accidents to Define Impact Injury Problems. Army Board for Aviation Accident Research, Fort Rucker, Ala. 13 p. Linear Acceleration of Impact Type, AGARD, Paris, 1971, pp. 9.1-9.App.1.
- Haslegrave, C. M. 1969. Anthropometric Dummies for Crash Research. Motor Industry Research Association, Lindley, England. 6 p. M.I.R.A. Bulletin, No. 5, 1969, pp. 25-30.
- Haslegrave, C. M. 1986. Characterizing the Anthropometric Extremes of the Population. Motor Industry Research Association, Nuneaton, Warwickshire, England. 21 p. Ergonomics, Vol. 29, No. 2, Feb 1986, pp. 281-301.
- Hayes, C. D.; Wasserman, J. F.; Butler, B. P. 1986. Effects of Helmet Weight and Center-of-Gravity on the Vibratory Dynamics of the Head-Neck System: A Modeling Approach. Tennessee University, Knoxville/ Army Aeromedical Research Laboratory, Fort Rucker, Ala. 7 p. International Modal Analysis Conference. Fourth. Proceedings. Feb 1986. Pp. 1201-1207.
- Hertzberg, H. T. E.; Daniels, G. S.; Churchill, E. 1954. Anthropometry of Flying Personnel 1950. Air Force Systems Command, Aerospace Medical Research Laboratories, Wright-Patterson AFB, Ohio/ Antioch College, Yellow Springs, Ohio. 140 p. Report No. WADC Technical Report 52-321.
- Hertzberg, H. T. E. 1969. The Anthropology of Anthropomorphic Dummies. Air Force Systems Command, Aeromedical Research Laboratory, Holloman AFB, N.M. 14 p. Stapp Car Crash Conference. Thirteenth. Proceedings, Society of Automotive Engineers, 1969, pp. 201-214. Report No. SAE 690805.
- Hertzberg, H. T. E. 1970. Misconceptions Regarding the Design and Use of Anthropomorphic Dummies. Air Force Systems Command, Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio. 5 p. M.I.R.A. Bulletin, No. 4, July/Aug 1970, pp. 17-21.
- Hines, R. H.; Palmer, R. W.; Haley, J. L., Jr.; Hiltz, E. E. 1990. **Development of an Improved SPH-4 Retention Assembly. Final Report**. Army Department, Washington, D.C. 19 p. Report No. 90-9.
- Hodgson, V.R., et al. Response of Facial Structure to Impact. 8th STAPP Car Crash Conference (1964).
- Hodgson, V. R.; Thomas, L. M. 1971. Breaking Strength of the Human Skull Vs. Impact Surface Curvature. Final Report. Wayne State University, College of Medicine, Department of Neurosurgery, Detroit, Mich. 62 p. Sponsor: National Highway Traffic Safety Administration, Washington, D.C. Report No. DOT HS 800 583.

- Hodgson, V. R.; Thomas, L. M. 1972. Comparison of Head Acceleration Injury Indices in Cadaver Skull Fracture. Wayne State University, College of Medicine, Detroit, Mich. 17 p. Stapp Car Crash Conference. Fifteenth. Proceedings, SAE, New York, 1972, pp. 190-206. Sponsor: National Highway Safety Bureau, Washington, D.C. Report No. SAE 710854.
- Hodgson, V. R.; Thomas, L. M. 1973. Breaking Strength of the Human Skull Vs. Impact Surface Curvature. Final Report. Wayne State University, College of Medicine, Department of Neurosurgery, Detroit, Mich. 189 p. Sponsor: National Highway Traffic Safety Administration, Washington, D.C. Report No. DOT/HS 801 002.
- Hodgson, V. R. 1990. Impact, Skid and Retention Tests on a Representative Group of Bicycle Helmets to Determine their Head-Neck Protective Characteristics. Wayne State University, Department of Neurosurgery, Detroit, Mich. 29 p. Sponsor: Centers for Disease Control, Atlanta, Ga.; Michigan Department of Public Health, Lansing.
- Hoen, T. G. M.; Wismans, J. S. H. M. 1986. Preliminary Development Head-Neck Simulator. Volume I: Analysis Volunteer Tests. Final Report. Instituut TNO voor Wegtransportmiddelen, Delft, Netherlands. Sponsor: National Highway Traffic Safety Administration, Vehicle Research and Test center, East Liberty, Ohio. Report No. 700560478-A/DOT/HS 807 035.
- Houston, P. 1989. Evaluation of the Belt Fit Test Device. New South Wales Roads and Traffic Authority, Australia. 41 p. Report No. RN 4/89.
- Howe, J. G.; Willke, D. T.; Collins, J. A. 1991. Development of a Featureless Free-Motion Headform. Transportation Research Center, East Liberty, Ohio/ National Highway Traffic Safety Administration, Washington, D.C./ Ohio State University, Columbus. 13 p. Stapp Car Crash Conference. Thirty-fifth. Proceedings. Warrendale, SAE, Nov 1991. Pp. 289-301. Report No. SAE 912909.
- Hubbard, R. P.; McLeod, D. G. 1973. A Basis for Crash Dummy Skull and Head Geometry. General Motors Corporation, Research Laboratories, Warren, Mich. 24 p. King, W. F., Mertz, H. J., eds. Human Impact Response; Measurement and Simulation. Proceedings of the Symposium on Human Impact Response. Plenum Press, New York, 1973. Pp. 129-152.
- Hubbard, R. P.; McLeod, D. G. 1974. **Definition and Development of a Crash Dummy Head**. General Motors Corporation, Research Laboratories, Biomedical Science Department, Warren, Mich. 30 p. Stapp Car Crash Conference. Eighteenth. Proceedings. Warrendale, Society of Automotive Engineers, 1974. Pp. 599-628. Report No. SAE 741193.
- Hubbard, R. P. 1975. Anthropometric Basis of the GM ATD 502 Crash Test Dummy. General Motors Corporation, Research Laboratories, Warren, Mich. 7 p. Report No. SAE 750429.
- Huston, J. C. 1975. A Comprehensive Analysis of Head and Neck Dynamics Arising from Impact and Inertia Forces. West Virginia University, Morgantown. 247 p.

- Kaleps, I.; Clauser, C. E.; Young, J. W.; Chandler, R. F.; Zehner, G. F.; McConville, J. T. 1984. Investigation into the Mass Distribution Properties of the Human Body and its Segments. Air Force Systems Command, Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio/ Civil Aeromedical Institute, Oklahoma City, Okla./ Anthropology Research Project, Yellow Springs, Ohio. 13 p. Ergonomics, Vol. 27, No. 12, Dec 1984, pp. 1225-1237. Report No. AMRL-TR-84-015.
- Kaleps, I.; White, R. P., Jr.; Beecher, R. M.; Whitestone, J.; Obergefell, L. A. 1988. Measurement of Hybrid III Dummy Properties and Analytical Simulation Data Base Development. Air Force Systems Command, Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio/ Systems Research Laboratories, Inc., Dayton, Ohio/ Beecher Research Company, Dayton, Ohio. 223 p. Sponsor: National Highway Traffic Safety Administration, Washington, D.C. Report No. AAMRL-TR-88-005.
- Kaleps, I.; Whitestone, J. 1988. Hybrid III Geometrical and Inertial Properties. Air Force Armstrong Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio/ Systems Research Laboratories, Inc., Dayton, Ohio. 23 p. Sponsor: National Highway Traffic Safety Administration, Washington, D.C. Report No. SAE 880638.
- Kshirsagar, A. M. Multivariate Analysis. Marcel Dekker, Inc., 1972, pp 424-465.
- Laubach, L. L.; McConville, J. T.; Churchill, E.; White, R. M. 1977. Anthropometry of Women of the U.S. Army 1977. Report no. 1 Methodology And Survey Plan. Technical Report. Webb Associates, Inc., Yellow Springs, Ohio/ Army Natick Research and Development Command, Mass. 204 p. Report No. CEMEL-172/ NATICK/TR-77/021.
- Laubach, L. L.; McConville, J. T.; Tebbetts, I. 1978. Anthropometric Source Book. Volume III: Annotated Bibliography of Anthropometry. Webb Associates, Inc., Yellow Springs, Ohio. 130 p. Sponsor: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, Tex. Report No. S-479/ NASA RP-1024.
- Lele, S.; Richtsmeier, J. T. 1991. Euclidean Distance Matrix Analysis: A Coordinate-Free Approach for Comparing Biological Shapes using Landmark Data. Department of Biostatistics, The Johns Hopkins University. 13 p. American Journal of Physical Anthropology, Vol. 70, pp. 415-427.
- Lovesey, E. J. 1974. The Development of a 3-Dimensional Anthropometric Measuring Technique. Great Britain Ministry of Defence, Royal Aircraft Establishment, Farnborough. 6 p. Applied Ergonomics, Vol. 5, No. 1, March 1974, pp. 36-41.
- McConville, J. T.; Alexander, M. 1963. Anthropometric Data in Three-Dimensional Form: Development and Fabrication of USAF Height-Weight Manikins. Antioch College, Yellow Springs, Ohio/ Air Force Systems Command, Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio. 114 p. Report No. AMRL-TDR-63-55.

- McConville, J. T.; Alexander, M. 1972. Anthropometry for Respirator Sizing. Webb Associates, Inc., Yellow Springs, Ohio. 120 p. Sponsor: U.S. Department of Health, Education, and Welfare, Health Services and Mental Health Administration, National Institute for Occupational Safety and Health. Contract No. HSM 099-71-11.
- McConville, J. T.; Clauser, C. E. 1976. Anthropometric Assessment of the Mass Distribution Characteristics of the Living Human Body. Webb Associates, Inc., Yellow Springs, Ohio/ Air Force Systems Command, Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio. 5 p. International Ergonomics Association. 6th Congress. Proceedings. Santa Monica, Human Factors Society, 1976. Pp. 379-383.
- McConville, J. T.; Churchill, E.; Churchill, T.; White, R. M. 1977. Anthropometry of Women of the U.S. Army 1977. Report no. 5 Comparative Data for U.S. Army Men. Technical report. Webb Associates, Inc., Yellow Springs, Ohio/ Army Natick Research and Development Command, Mass. 239 p. Report No. CEMEL-176/ NATICK/TR-77/029.
- McConville, J. T. 1978. Anthropometry in Sizing and Design. Anthropometric Source Book. Volume I: Anthropometry for Designers. [Chapter VIII] Churchill, E.; Laubach, L. L.; McConville, J. T.; Tebbetts, I., eds. 1978. Webb Associates, Inc., Yellow Springs, Ohio. 23 p. Sponsor: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, Tex. Pp. VIII.1-VIII.23. Report No. S-479/ NASA RP-1024.
- McConville, J. T.; Tebetts, I.; Alexander, M. 1979. Guidelines for Fit Testing and Evaluation of USAF Personal-Protective Clothing and Equipment. Anthropology Research Project, Inc., Yellow Springs, Ohio. 45 p. Sponsor: Aerospace Medical Research Laboratory, Aerospace Medical Division, AFSC, Wright-Patterson AFB, Ohio. Report No. AMRL-TR-79-2.
- McConville, J. T.; Churchill, T. D.; Kaleps, I.; Clauser, C. E.; Cuzzi, J. 1980. Anthropometric Relationships of Body and Body Segment Moments of Inertia. Anthropology Research Project, Inc., Yellow Springs, Ohio/ Air Force Systems Command, Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio/ Texas Institute for Rehabilitation and Research, Houston. 113 p. Sponsor: National Highway Traffic Safety Administration, Washington, D.C. Report No. AMRL-TR-80-119.
- McConville, J. T.; Robinette, K. M.; White, R. M. 1981. An Investigation of Integrated Sizing for U.S. Army Men and Women. Anthropology Research Project, Inc., Yellow Springs, Ohio. 67 p. Sponsor: U.S. Army Natick Research & Development Laboratories, Natick, Mass. Report No. NATICK/TR-81/033.
- McElhaney, J. H.; Stalnaker, R. L.; Estes, M. S.; Rose, L. S. 1969. **Dynamic Mechanical Properties of Scalp and Brain**. West Virginia University, Morgantown, Biomechanics Laboratory. 7 p. Rocky Mountain Bioengineering Symposium Conference Record. Sixth Annual, IEEE, 1969, pp. 67-73. Sponsor: National Institutes of Health, Bethesda, Md.
- Melvin, J. W.; Evans, F. G. 1971. A Strain Energy Approach to the Mechanics of Skull Fracture. Highway Safety Research Institute, Ann Arbor,

- Mich./ Michigan University, Ann Arbor, Department of Anatomy. 17 p. Sponsor: National Institutes of Health, Bethesda, Md. Report No. SAE 710871.
- Mertz, H. J., Jr.; Patrick, L. M. 1967. Investigation of the Kinematics and Kinetics of Whiplash. Wayne State University, Detroit, Mich. 32 p. Stapp Car Crash Conference, 11th. Proceedings. Society of Automotive Engineers, Inc., 1967, pp. 175-206. Report No. SAE 670919.
- Mertz, H. J., Jr. 1967. The Kinematics and Kinetics of Whiplash. Wayne State University, Detroit, Mich. 390 p.
- Mertz, H. J.; Patrick, L. M. 1971. Strength and Response of the Human Neck. General Motors Corporation, Research Laboratories, Warren, Mich./ Wayne State University, Detroit, Mich. 37 p. Report No. SAE 710855.
- Mertz, H. J.; Irwin, A. L.; Melvin, J. W.; Stanaker, R. L.; Beebe, M. S. 1989. Size, Weight and Biomechanical Impact Response Requirements for Adult Size Small Female And Large Male Dummies. General Motors Corporation, Warren, Mich./ Ohio State University, Columbus/ Humanetics, Inc., Carson, Calif. 12 p. Automotive Frontal Impacts. Warrendale, SAE, Feb 1989. Pp. 133-144. Report No. SAE 890756.
- Mertz, H. J. 1993. Anthropomorphic Test Devices. General Motors Corporation, Warren, Mich. 19 p. Nahum, A. M., and Melvin, J. W., eds. Accidental Injury: Biomechanics and Prevention. New York, Springer-Verlag New York, Inc., 1993. Pp. 66-84.
- Moroney, W. F. 1972. The Use of Bivariate Distributions in Achieving Anthropometric Compatibility in Equipment Design. Part I: The Requirement. (See Moroney, Smith, 1972.)
- Moroney, W. F.; Smith, M. J. 1972. The Use of Bivariate Distributions in Achieving Anthropometric Compatibility in Equipment Design. Part I (Moroney): The Requirement. Part II (Smith): The Development. Naval Aerospace Medical Research Laboratory, Pensacola, Fla. 8 p. Knowles, W. B., Sanders, M. S., Muckler, F. A., eds. Technology for Man 72. Proceedings of the Sixteenth Annual Meeting of the Human Factors Society. Human Factors Society, Santa Monica, Oct. 1972. Pp. 16-23.
- Moroney, W. F.; Smith, M. J. 1972. Empirical Reduction in Potential User Population as the Result of Imposed Multivariate Anthropometric Limits. Naval Aerospace Medical Research Laboratory, Pensacola, Fla. 13 p. Report No. NAMRL-1164.
- Moulton, J.R. et al. Design, Development and Testing of a Load-Sensing Crash Dummy Face, SAE 840397.
- Newman, J. A., Gallup, B. M. 1984. Biofidelity Improvements to the Hybrid III Headform. Biokinetics and Associates, Ltd., Ottawa, Ontario, Canada. 13 p. Stapp Car Crash Conference. Twenty-Eighth. Proceedings. Warrendale, Society of Automotive Engineers, Nov 1984. Pp. 87-99. Sponsor: Canada, Transport Canada, Road and Motor Vehicle Traffic Safety Branch, Ottawa, Ontario. Report No. SAE 841659.

- Palmer, R. W. 1991. SPH-4 Aircrew Helmet Impact Protection Improvements 1970-1990. Final Report. Army Aeromedical Research Laboratory, Fort Rucker, Ala. 41 p. Report No. USAARL Report No. 91-11.
- Perl, T. R.; Nilsson, S.; Planath, I.; Wille, M. G. 1989. **Deformable Load Sensing Hybrid III Face**. Collision Safety Engineering Inc., Orem, Utah/ Volvo Car Corporation, Goeteborg, Sweden/ Brigham Young University, Provo, Utah. 14 p. Stapp Car Crash Conference. Thirty-Third. Proceedings. Warrendale, SAE, Oct 1989. Pp. 29-42. Report No. SAE 892427.
- Prasad, et al. 1988. Advanced Anthropomorphic Test Device (AATD) Development Program. Phase 1 Reports: Concept Definition. Michigan University, Ann Arbor, Transportation Research Institute. 546 p. Sponsor: National Highway Traffic Safety Administration, Washington, D.C. Report No. DOT/HS 807 224.
- Reading, T. E.; Haley, J. L., Jr.; Sippo, A. C.; Licina, J.; Schopper, A. W. 1984. SPH-4 U.S. Army Flight Helmet Performance, 1972-1983. Army Aeromedical Research Laboratory, Fort Rucker, Ala. 44 p. Report No. USAARL-85-A.
- Reynolds, H. M.; Clauser, C. E.; McConville, J.; Chandler, R.; Young, J. W. 1975. Mass Distribution Properties of the Male Cadaver. Highway Safety Research Institute, Ann Arbor, Mich./ Webb Associates, Yellow Springs, Ohio/Civil Aeromedical Institute, Oklahoma City, Okla. 20 p. Report No. SAE 750424.
- Reynolds, H. M.; Snow, C.C.; Young, J. W. 1981. Spatial Geometry of the Human Pelvis. Michigan State University, College of Osteopathic Medicine, East Lansing/ Federal Aviation Administration, Civil Aeromedical Institute, Oklahoma City, Okla. 39 p. Sponsor: National Highway Traffic Safety Administration, Washington, D.C./ Air Force Office of Scientific Research, Arlington, Va. Report No. AAC-119-81-5.
- Robbins, D. H. 1983. Anthropometric Specifications for Mid-Sized Male Dummy. (See Robbins, D. H. 1983. Anthropometry of motor vehicle occupants. Volume 2.)
- Robbins, D. H. 1983. Anthropometric Specifications for Small Female and Large Male Dummies. (See Robbins, D. H. 1983. Anthropometry of motor vehicle occupants. Volume 3.)
- Robbins, D. H. 1983. Anthropometric Specifications for Mid-Sized Male Dummy, Volume 2, and for Small Female and Large Male Dummies, Volume 3. Final Report; Anthropometry of Motor Vehicle Occupants. Volume 2 mid-Sized Male. Volume 3 Small Female and Large Male. Michigan University, Ann Arbor, Transportation Research Institute. 219 p. Sponsor: National Highway Traffic Safety Administration, Washington, D.C. Report No. DOT/HS 806 716/ DOT/HS 806 717/
- Robinette, K. M.; McConville, J. T. 1981. An Alternative to Percentile Models. Anthropology Research Project, Inc., Yellow Springs, Ohio. 9 p. Report No. SAE 810217.

Robinette, K. M.; Whitestone, J. J. 1992. Methods for Characterizing the Human Head for the Design of Helmets. Final report. Design Technology Branch, Human Engineering Division, Crew Systems Directorate, Armstrong Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio. 73 p. Report No. AL-TR-1992-0061.

Robinette, K. M. 1993. Fit Testing as a Helmet Development Tool. Air Force Armstrong Laboratory, Wright-Patterson AFB, Ohio. 5 p. Human Factors and Ergonomics Society. 37th Annual Meeting. Designing for Diversity. Proceedings. Volume 1. Santa Monica, Human Factors and Ergonomics Society, 1993. Pp. 69-73.

Robinette, K. M.; Whitestone, J. J. 1994. The Need for Improved Anthropometric Methods for the Development of Helmet Systems. Design Technology Branch, Human Engineering Division, Crew Systems Directorate, Armstrong Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio. 5 p. Aviation, Space, and Environmental Medicine, Vol. 65, No. 5 Suppl., May 1994, pp. A95-9.

Robinson, J. C.; Robinette, K. M.; Zehner, G. F. 1988. User's Guide to Accessing the Anthropometric Data Base at the Center for Anthropometric Research Data. Interim Report. Systems Research Laboratories, Inc., Dayton, Ohio. 62 p. Sponsor: Air Force Systems Command, Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio. Report No. AAMRL-TR-88-012.

Robinson, J. C.; Robinette, K. M.; Zehner, G. F. 1992. User's Guide to the Anthropometric Database at the Computerized Anthropometric Research and Design (CARD) Laboratory. Final report. Second edition. Systems Research Laboratories, Inc., Dayton, Ohio/ Air Force Systems Command, Wright-Patterson AFB, Ohio. 145 p. Report No. AL-TR-1992-0036.

Sakurai, M.; Kobayashi, K.; Ishikawa, H.; Ono, K.; Sasaki, A.; Misawa, S. 1993. Experimental Consideration on Headform Impact Test for Pedestrian Protection. Japan Automobile Research Institute, Inc., Ibaraki/ Japan Automobile Manufacturers Association, Tokyo. 8 p. Human Surrogates: Design, Development and Side Impact Protection. Warrendale, SAE, 1993. Pp. 9-16. Report No. SAE 930095.

Schneider, L. W.; Bowman, B. M.; Snyder, R. G.; Peck, L. S. 1976. A Prediction of Response of the Head and Neck of the Adult Military Population to Dynamic Impact Acceleration. 12 Month Technical Report. Highway Safety Research Institute, Ann Arbor, Mich. 163 p. Sponsor: Office of Naval Research, Biomedical and Medical Sciences Division, Arlington, Va. Report No. TR 1/ UM-HSRI-76-10.

Schneider, L. W.; Robbins, D. H.; Pflug, M. A.; Snyder, R. G. 1983. Development of Anthropometrically Based Design Specifications for an Advanced Adult Anthropomorphic Dummy Family, Volume 1. Final Report; Anthropometry of Motor Vehicle Occupants. Volume 1 - Procedures, Summary Findings and Appendices. Michigan University, Ann Arbor, Transportation Research Institute. 426 p. Sponsor: National Highway Traffic Safety Administration, Washington, D.C. Report No. DOT/HS 806 715/ Searle, J. A.;

- Searle, J. A.; Haslegrave, C. M. 1970. Improvements in the Design of Anthropometric/Anthropomorphic Dummies. Motor Industry Research Association, Lindley, England. 14 p. M.I.R.A. Bulletin, No. 5, Sept/Oct 1970, pp. 10-23.
- Searle, J. A. 1974. The Geometric Basis of Seat-Belt Fit. Motor Industry Research Association, Lindley, England. 16 p. Ergonomics, Vol. 17, No. 3, May 1974, pp. 401-416.
- Smith, M. J. 1972. The Use of Bivariate Distributions in Achieving Anthropometric Compatibility in Equipment Design. Part II: the Development. (See Moroney, Smith, 1972.)
- Snow, C. C.; Reynolds, H. M.; Allgood, M. A. 1975. Anthropometry of Airline Stewardesses. Civil Aeromedical Institute, Oklahoma City, Okla. 103 p. Sponsor: Federal Aviation Agency, Office of Aviation Medicine, Washington, D.C. Report No. FAA-AM-75-2.
- Spittle, E. K.; Miller, D. J.; Shipley, B. W.; Kaleps, I. 1992. Hybrid II and Hybrid III Dummy Neck Properties for Computer Modeling. Air Force Armstrong Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio/ Systems Research Laboratories, Inc., Dayton, Ohio. 138 p. Report No. AL-TR-1992-0049.
- Starkey, J.; Young, J.; Alderson, S. W.; Cichowski, W. G.; Sobkow, W. J., Jr.; Krag, M. T.; Horn, W. D. 1969. The First Standard Automotive Crash Dummy. Ford Motor Company, Dearborn, Mich./ Alderson Research Laboratories, Inc., Stamford, Conn./ General Motors Corporation, Proving Ground Section, Milford, Mich./ Chrysler Corporation, Mich. 12 p. Report No. SAE 690218.
- Tebetts, I.; McConville, J. T.; Alexander, M. 1979. Height/Weight Sizing Programs for Women's Protective Garments. Anthropology Research Project, Inc., Yellow Springs, Ohio. 126 p. Sponsor: Aerospace Medical Research Laboratory, Aerospace Medical Division, AFSC, Wright-Patterson AFB, Ohio. Report No. AMRL-TR-79-35.
- Tebetts, I.; Churchill, T.; McConville, J. T. 1980. Anthropometry of Women of the U.S. Army 1977. Report No. 4 -Correlation Coefficients. Anthropology Research Project, Inc., Yellow Springs, Ohio. 117 p. Sponsor: Army Natick Research and Development Command, Mass. Report No. CEMEL-209/NATICK/TR-80/016.
- Thom, D. R.; Cann, M. 1990. Motorcycle Helmet Retention Devices: Convenience and Comfort. University of Southern California, Los Angeles. 5 p. Human Factors Society. 34th Annual Meeting. Countdown to the 21st Century. Proceedings. Volume 2. Santa Monica, Human Factors Society, 1990. Pp. 971-975.
- Thurlow, S. J. 1963. Impact Tests on Human Occipital Scalp Material. Road Research Laboratory, Crowthorne, England. 9 p. British Journal of Experimental Pathology, Vol. 44, 1963, pp. 538-545.

- Thurston, G. A.; Fay, R. J. 1974. Theoretical and Mechanical Models of the Human Neck. Final Report. Denver University, Department of Mechanical Sciences and Environmental Engineering, Colo. 79 p. Sponsor: Office of Naval Research, Washington, D.C.
- Turner, A. K. 1968. FORTRAN IV Programs to Develop Contour Maps on 3-Dimensional Data. Progress Report. Purdue and Indiana State Highway Commission Joint Highway Research Project, Lafayette. 86 p.
- Walker, L. B., Jr.; Harris, E. H.; Pontius, U. R. 1973. Mass, Volume, Center of Mass, and Mass Moment of Inertia of Head and Head and Neck of Human Body. Tulane University, New Orleans, La. 13 p. Stapp Car Crash Conference. Seventeenth. Proceedings. Society of Automotive Engineers, New York, 1973. Pp. 525-537. Sponsor: Office of Naval Research, Washington, D.C.; Naval Aerospace Medical Institute, Pensacola, Fla. Report No. SAE 730985.
- Walker, L. B., Jr.; Harris, E. H.; Pontius, U. R. 1973. Mass, Volume, Center of Mass and Mass Moment of Inertia of Head and Head and Neck of the Human Body. Final Report; Determination of Some Physical Measurements of the Head and Neck of Human Cadavers. Tulane University, New Orleans, La. 29 p. Sponsor: Office of Naval Research, Washington, D.C.
- Webster, G. D.; Newman, J. A. 1976. A Comparison of the Impact Response of Cadaver Heads and Anthropomorphic Headforms. Ottawa University, Department of Mechanical Engineering, Ontario, Canada. 20 p. Huelke, D. F., ed. American Association for Automotive Medicine. 20th Conference. Proceedings. AAAM, 1976. Pp. 221-240. Sponsor: National Research Council, Ottawa, Ontario, Canada, Canada, Transport Canada, Ottawa, Ontario.
- Weinbach, A. P. 1938. Contour Maps, Center of Gravity, Moment of Inertia and Surface Area of the Human Body. Columbia University, Department of Diseases of Children, New York, N.Y./ Babies Hospital, New York, N.Y. 16 p. Human Biology, Vol. 10, No. 3, 1938, pp. 356-371.
- White, R. M. 1977. An Annotated Bibliography of U.S. Army Anthropology (1947-1977) Army Natick Research and Development Command, Mass. 169 p. Report No. CEMEL-170/ NATICK/TR-78/012.
- White, R. M. 1979. The Anthropometry of United States Army Men and Women: 1946-1977. Army Natick Research and Development Command, Natick, Mass. 10 p. Human Factors, Vol. 21, No. 4, Aug 1979, pp. 473-482.
- Whitestone, J. J. 1993. Design and Evaluation of Helmet Systems Using 3D Data. Air Force Armstrong Laboratory, Wright-Patterson AFB, Ohio. 5 p. Human Factors and Ergonomics Society. 37th Annual Meeting. Designing for Diversity. Proceedings. Volume 1. Santa Monica, Human Factors and Ergonomics Society, 1993. Pp. 64-68.
- Williams, J.; Belytschko, T. 1981. A Dynamic Model of the Cervical Spine and Head. Final Technical Report. Northwestern University, Evanston, Ill. 159 p. Sponsor: Air Force Systems Command, Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio. Report No. AMRL-TR-81-5.

- Young, J. W.; Chandler, R. F.; Snow, C. C.; Robinette, K. M.; Zehner, G. F.; Lofberg, M. S. 1983. Anthropometric and Mass Distribution Characteristics of the Adult Female. Revised Edition. Civil Aeromedical Institute, Oklahoma City, Okla. 103 p. Sponsor: Federal Aviation Administration, Office of Aviation Medicine, Washington, D.C.; National Highway Traffic Safety Administration, Washington, D.C. Report No. FAA-AM-83-16/DOT/HS 806 510.
- Young, J. W. 1993. Head and Face Anthropometry of Adult U.S. Citizens. Civil Aeromedical Institute, Oklahoma City, Okla. 44 p. Sponsor: Federal Aviation Administration, Washington, D.C. Report No. DOT/FAA/AM-93/10.
- Zehner, G. F. 1986. Three-Dimensional Summarization of Face Shape. Anthropology Research Project, Inc., Yellow Springs, Ohio. 5 p. Human Factors Society. 30th Annual Meeting. Proceedings. Volume 1. Dayton, Ohio, Human Factors Society, 1986. Pp. 206-210. Sponsor: Aerospace Medical Research Laboratory, Aeronautical Systems Division, Wright-Patterson AFB, Ohio. (1986, Human Factors Society, proceedings, 30th annual meeting).
- Zehner, G. F. 1992. A Multivariate Anthropometric Method of Crewstation Design: Abridged. Final Report. Aerospace Medical Research Laboratory, Aeronautical Systems Division, Wright-Patterson AFB, Ohio. 50 p. Report No. AL-TR-1992-0164.
- Zeigen, R. S.; Alexander, M.; Churchill, E. 1960. A Head Circumference Sizing System for Helmet Design. 97 p. Wright Air Development Division, Wright-Patterson AFB, Ohio. WADD Technical Report 60-631.
- Ziegler, P. N. 1982. The Relationship Between Shoulder Fit and Occupant Protection. National Highway Traffic Safety Administration, Washington, D.C. 12 p. American Association for Automotive Medicine. 26th Annual Conference. Proceedings. Arlington Heights, Ill., AAAM, 1982. Pp. 267-278.

APPENDIX A

LITERATURE SEARCH

LIST OF TABLES

- 1. Helmet Retention and Fit Testing References
- 2. Layout of ANSUR Data Files
- 3. Head Mass, Density, and Principal Moments of Inertia
- 4. Head Center of Gravity and Occipital Condyles Locations

LITERATURE SEARCH

A literature search intended to help establish the most appropriate design specifications for headform characteristics and properties was conducted in a continuing manner over the course of the project. References of potential interest were those that have pertinence to anthropometric modeling, head anthropometry, inertial properties, skin and surface properties, and location of the center of gravity and occipital condyles. Over 500 references were identified on the basis of keyword, author, corporate author, and title searches as being of potential usefulness; these were obtained and examined. A large proportion of those references were identified by keyword searches. Searches for keywords within titles of articles and in keyword fields were conducted. Keywords (and stems), sometimes used in logical 'and' combinations, included: manikin, dummy, head, headform, face, facial, neck, force, load, friction, helmet, mask, goggle, fit, strap, retention, nape, chin, skull, dura, skin, scalp, hair, cranial, anthropom, Hybrid III, Hybrid 3, AATD, ATD, inertia, mass, 3-D, 3-dimensional, surface, contour, and others.

Approximately half of all identified references were found to be of no interest upon perusal. Additional references were found not to be of interest after somewhat more careful examination. Of all references obtained, 150 were found to contain information of direct or indirect usefulness in this project. There are two general subject areas for which references were identified and reviewed but which are not discussed in this report. These are helmet retention and fit testing. Pertinent papers, articles, and reports are listed in Table 1.

Table 1. Helmet Retention and Fit Testing References

Helmet Retention

1969. Head protection for the military aviator. National Academy of Sciences-National Research Council.

Andersson, T.; Larsson, P.-O.; Sandberg, U. 1993. Chin strap forces in bicycle helmets.

Carter, R.M. 1992. A new generation of U.S. Army flight helmets.

Gilchrist, A.; Mills, N. J. 1992. Critical assessment of helmet retention system test methods.

Haley, J. L., Jr.; Turnbow, J. W. 1966. Impact test methods and retention harness criteria for U.S. Army aircrewman protective headgear.

Haley, J. L., Jr. 1971. Analysis of U.S. Army helicopter accidents to define impact injury problems.

Hines, R. H.; Palmer, R. W.; Haley, J. L., Jr.; Hiltz, E. E. 1990. Development of an improved SPH-4 retention assembly.

Hodgson, V. R. 1990. Impact, skid and retention tests on a representative group of bicycle helmets to determine their head- neck protective characteristics.

Palmer, R. W. 1991. SPH-4 aircrew helmet impact protection improvements 1970-1990.

Reading, T. E.; Haley, J. L., Jr.; Sippo, A. C.; Licina, J.; Schopper, A. W. 1984. SPH-4 U.S. Army flight helmet performance, 1972-1983.

Thom, D. R.; Cann, M. 1990. Motorcycle helmet retention devices: convenience and comfort.

Fit Testing

Alexander, M.; McConville, J. T.; Tebbetts, I. 1979. Anthropometric sizing, fittesting and evaluation of the MBU-12/P oral nasal oxygen mask.

McConville, J. T.; Tebetts, I.; Alexander, M. 1979. Guidelines for fit testing and evaluation of USAF personal-protective clothing and equipment.

Robinette, K. M. 1993. Fit testing as a helmet development tool.

Robinette, K. M.; Whitestone, J. J. 1994. The need for improved anthropometric methods for the development of helmet systems.

Whitestone, J. J. 1993. Design and evaluation of helmet systems using 3D data.

A1.0 ANTHROPOMETRIC SURVEYS

Three military anthropometric projects were identified from the literature search as being of potential usefulness in the present study. These are: 1) the Tri-Service database, 2) the CARD database, and 3) the ANSUR database. The database selected for use in the study was the ANSUR database. The factors that resulted in this choice are discussed in Section A1.3.

A fourth database, the CAMI database of adult civilian head and face anthropometry was given brief consideration. The description of this database may be found in *Head and Face Anthropometry of Adult U.S. Citizens* (J. W. Young; 1993). This database might have been useful except for its small size (195 females and 172 males) and the fact that no facial landmark coordinate data are available.

A1.1 The Tri-Service Database

The Tri-Service database is the culmination of a project begun at the U.S. Army Aeromedical Research Laboratory (USAARL) in 1980. Its development was coordinated by the Tri-Service Working Group on Biomechanics of the Tri-Service Committee of the Tri-Service Aeromedical Research Panel. While the

Army, Navy, and Air Force all participated in the development of the database, the data are mostly from a 1967 survey of U.S. Air Force rated male aircrew. Data represent 3rd, 50th, and 95th percentile aircrew as defined from stature and weight multiple regression equations. The 1967 data were projected, by a technique of Churchill and McConville (1976), to reflect assumed increases in body size from 1967 to the 1980-1990 time period. Some dimensions not measured in the 1967 survey were derived from other data in that survey or estimated from other surveys. There are no coordinate data for anatomical landmarks in the Tri-Service database; i.e., only "standard" anthropometric dimensional measurements are available.

Head and face dimensions in the Tri-Service database, like all other dimensions-such as sitting height, hip width, etc.-- are based on multiple regressions on stature and weight. That is, head and face dimensions, like all other dimensions, are assumed to be proportional to stature and weight, being of the form

(head/face dimension) = C_1 * (stature) + C_2 * (weight) + C_3

where C_1 , C_2 , and C_3 are regression constants. This is not a good assumption, however, as head sizes and facial dimensions of adults tend to be independent from body size.

The unavailability of coordinate data for anatomical landmarks and the implicit assumption of a proportional dependence of head and face dimensions on stature and weight are factors which make the Tri-Service database of questionable usefulness for the particular application of the present study, i.e., development of small, midsized, and large headforms. An additional factor is that the database includes no data for female subjects, which need to be utilized in the present study.

The Tri-Service database is described and documented in a Tri-Service report: Anthropometry and Mass Distribution for Human Analogues--Volume I: Military Aviators (1988). Other pertinent reports are The AMRL Anthropometric Data Bank Library: Volumes I-V (E. Churchill, P. Kikta, and T. Churchill; 1977) and Sampling and Data Gathering Strategies for Future USAF Anthropometry (Churchill and McConville; 1976).

A1.2 The CARD Database

The Anthropometric Database at the U.S. Air Force Computerized Anthropometric Research and Design (CARD) Laboratory is operated by AL/CFHD at Wright-Patterson AFB, Ohio. Access to the database is through menu-driven applications software. The database presently contains data for anthropometric variables collected in nine different surveys. Five of the surveys are of Air Force personnel, and there are three for Army and one for Navy personnel. There are databases for both males and females. The earliest survey in the CARD Anthropometric Database is 1965 and the latest is 1977.

Data may be selected by body region, of which head and neck is one, as well as by type, e.g., arcs, breadths, circumferences, etc. The numeric data available are summary statistics and frequency data for each measurement. As with the Tri-Service database, there are no coordinate data for anatomical landmarks in the CARD Anthropometric Database; i.e., only "standard" anthropometric dimensional measurements are available, and it would therefore be difficult to

establish facial surface contour details using this database. Further, as with the Tri-Service database, data for individual subjects seem not to be available, which makes it impossible to do regression studies for independent variables not selected by the CARD Laboratory for determination of summary statistics (even though regression coefficients for some independent variables may be available). These two factors, together with the fact that the data are 20-30 years old and thus not entirely representative of the 1990s population, make it doubtful that this database could be used effectively to meet the particular goals of the present study.

The CARD Anthropometric Database is described and documented in a CARD report: User's Guide to the Anthropometric Database at the Computerized Anthropometric Research and Design (CARD) Laboratory: Second Edition (J. Robinson, K. Robinette, and G. Zehner; 1992). Another pertinent report is User's Guide to Accessing the Anthropometric Data Base at the Center for Anthropometric Reseach Data (same authors; 1988).

[The U.S. Air Force also has a database called the AAMRL Biodynamics Data Bank, which contains both dynamic test response data and anthropometry data. This database is described in *The AAMRL Biodynamics Data Bank* (J. Abrams, I. Kaleps, J. Brinkley; 1988). This database was not given consideration because its anthropometry data content is too limited.]

A1.3 The ANSUR Database

The U.S. Army Anthropometric Survey (ANSUR) was conducted in 1987-1988. Approximately 26,000 subjects at 11 Army bases were screened for the survey. A sampling strategy described in the final report reduced the number of subjects to be fully measured to about 9,000. From the measured survey sample a final survey database of 3,982 subjects was determined in such a manner as to reflect the proportions of men and women in various racial/ethnic and age groups found in the June, 1988 Army. Measurement data for 1,774 men and 2,208 women comprise the working database.

At each Army base the subjects were measured for 132 dimensions at a series of measuring stations. Portable personal computers were independently operated at each of the measuring stations, from the in-processing station through the outprocessing station, for recording and verifying data with a custom-designed computer data entry and editing system. Each subject carried a floppy diskette with his/her data from station to station.

In addition to the 132 standard dimensions measured for each subject, head and face data were determined by use of an automated headboard device (AHD). Twenty-six head and face landmarks were selected for automated measurement of coordinates. The landmarks selected were chosen on the basis of their usefulness in the design of helmets, respirators, goggles, and other personal protective equipment.

In the final report ("Methods and Summary Statistics") data for each measurement are given in terms of percentiles and frequency tables for males and females separately. Values for percentiles 1, 2, 3, 5, 10, 15, ..., 90, 95, 97, 98, 99 are tabulated, and frequencies are given for steps of from 0.1 to 1.5 cm, depending on the particular dimension. The coordinate data for head and face landmarks are not included in these tables, but, instead, tables are included for 48

dimensions derived from the coordinate data--e.g., Z_{menton} minus $Z_{top-of-head}$ is given as a measure of head height.

Several factors recommend the ANSUR data as preferable to the Tri-Service data or the CARD data for use in the present study. One is the currency of the data--1988 in contrast to 1967 data projected to 1980-1990 in the case of Tri-Service and 1965-1977, unprojected data in the case of CARD. A second is that the ANSUR database includes data for females, as well as data for males (separately). (The CARD database also includes data for females.) Third, "raw" data for head and face dimensions are present in the database; i.e., head and face data have not been reduced to values for small, midsized, and large overall size by regressions on stature and weight as in the case of the Tri-Services database. It is absolutely necessary to be able to establish shape and dimensions for small, midsized, and large heads and faces on the basis of independent variables specific to the head and face. Fourth, in order to do regressions or any other type of modeling, data for all subjects--not just reduced data, frequency data, and summary data--are needed, and those data are available for the ANSUR study. Fifth, the ANSUR data may be more accurate than the data in the other two databases-- particularly the head and face data, which were determined from use of the Automated Headboard Device--since a computer data entry and editing system was used. Finally, coordinate data for head and facial landmarks, while not in the printed report, are available (for all subjects), and such data are considered vital for establishing the shape and dimensional specifications for headforms in the present study.

The ANSUR database is described and documented in a series of reports. The primary ones relevant to the present study are: 1988 Anthropometric Survey of U.S. Army Personnel - Methods and Summary Statistics (Gordon, C. C., et al.; 1989), and The Development and Validation of an Automated Headboard Device for Measurement of Three-dimensional Coordinates of the Head and Face (J. F. Annis and C. C. Gordon; 1988).

[Note: From the approximately 9,000 subjects who were fully measured, Natick also developed a subset database of 487 male pilots and 334 females who met the 1988 anthropometric criteria for entry into pilot training. That database is described in 1988 Anthropometric Survey of U.S. Army Personnel: Pilot Summary Statistics (S. M. Donelson and C. C. Gordon; 1991). This database was not considered for use in this study because it is only one-fifth as large as the working database described, which we considered too small for the type of anthropometric modeling to be conducted. It was believed, additionally, that there would be no important differences in head and face dimensions between the pilot and general populations of the U.S. Army. That this is correct is suggested by the pilot-vs.-general population comparisons of average values for variables such as arm length, chest depth, and sitting height on pages 2 and 3 of that (No head or face measures are included in the comparisons.) Dr. Claire C. Gordon of Natick, a coauthor, has also stated in a personal communication that she agrees that pilot head and face data would not be significantly different from data for the general U.S. Army population.

A2.0 DATA ANALYSIS

After the decision was made that the ANSUR database is the one most suitable for meeting the objectives of the project, contacts were made with Dr. Claire C. Gordon of U.S. Army Natick Research, Development and Engineering Center, the

principal investigator of the 1988 Anthropometric Survey of U.S. Army personnel. Dr. Gordon agreed to make all requested data available for use in the headform study. Dr. Brian Corner of GEO-CENTERS, Inc., a task order contractor to Natick, prepared the data files and sent them on floppy diskette. The first data sets received were incomplete, so additional diskettes were obtained. The data files were put into a different format, and the head and face landmark coordinate data were merged with the anthropometric variables data.

Table 2 shows the format of the ANSUR data files. There is one file for the 1,774 male subjects and one file for the 2,208 female subjects. A subject-by-subject layout is used for these files. The files include data for several biographical variables (sex, age, race, and MOS), weight, stature, neck circumference, 16 head and face traditional anthropometric variables, and coordinate positions of 26 head and face landmarks.

Table 2. Layout of ANSUR Data Files

```
MWDBXYZ.VAR (1774 subjects)**|
MEN1.VAR (5692 subjects) |---> MWDBXYZ.MER (1774 subjects)**

WWDBXYZ.VAR (2208 subjects) |
WOM1.VAR (3599 subjects) |---> WWDBXYZ.MER (2208 subjects)
```

** NOTE: The MWDBXYZ.VAR originally received included complete data for only 1665 (male) subjects. The missing data for 109 subjects was requested and received on August 1, 1994. The files MWDBXYZ.VAR, MWDBXYZ.MER, and VAR.MER (this file) have been modified accordingly.

The files are sequential with ASCII format. Length variable values are in mm and are space delimited. Weight is kilograms multiplied by 10. Head/face X, Y, and Z values are in units of 0.1 mm (i.e., values are mm multiplied by 10).

line 1: SUBJNO, SEX, AGE, RACESUBJ, MOSPRIM line 2: NECKCIRC (80), WEIGHT (124), STATURE (99) line 3: SUBJNO (head/face dimensions: 7 values)

Field

- 1 SUBJNO
- 2 HEADLGTH (62)
- 3 HEADBRTH (60)
- 4 HEADCIRC (61)
- 5 BITCHARC (15)
- 6 BITCOARC (16)
- 7 BITCRARC (17)
- 8 BITFRARC (18)

- line 4: (head/face dimensions: 9 values)
 - 1 BITSMARC (19)
 - 2 BITSNARC (20)
 - 3 BIZBDTH (21)
 - 4 EARBDTH (43)
 - 5 EARLGTH (44)
 - 6 EARLTRAG (45)
 - **7 EARPROT (46)**
 - 8 INPUPBTH (68)
 - 9 MENSELL (77)

lines 5-30 are the head/face landmark X, Y, and Z coordinates:

The (X,Y,Z) coordinate data have units of 0.1 mm. The origin is in the upper left corner if you are facing an individual. The AHD machine was zeroed out above and slightly behind the right shoulder at the top of the head. X is positive forward, Y is positive to the subject's left, and Z is positive downward.

- line 5: CRINON
- line 6: GLABELLA
- line 7: SELLION
- line 8: PRONASALE
- line 9: SUBNASALE
- line 10: STOMION
- line 11: PROMENTON
- line 12: MENTON
- line 13: R GONION
- line 14: L GONION
- line 15: R CHEILION
- line 16: L CHEILION
- line 17: R ALARE
- line 18: L ALARE
- line 19: R TRAGION
- line 20: L TRAGION
- line 21: R INFRAORBITALE
- line 22: L INFRAORBITALE
- line 23: R ECTOORBITALE
- line 24: L ECTOORBITALE
- line 25: R ZYGION
- line 26: L ZYGION
- line 27: R ZYGOFRONTALE

line 28: L ZYGOFRONTALE

line 29: R FRONTOTEMPORALE line 30: L FRONTOTEMPORALE

BIOGRAPHICAL DATA (line 1)

SEX -- 1=male, 2=female

AGE -- in years

RACESUBJ -- a composite of all the ethnic/race components in a subject's family. Numbers reflect subject's identify and family background. The numbers are 1-white, 2-black, 3-Hispanic, 4-Asian, 5-Native American, 6-Caribbean islander, 7-East Indian (Continental India and surrounding areas), 8-Arab. Order reflects percentage in the Army population. Mixed race individuals are indicated by a RACESUBJ > 8. For example, a person with Hispanic and black parents who considers him/herself black would be coded 23. Thus, someone with a RACESUBJ of 435 would be Asian (primarily) with Hispanic and Native American admixture.

MOSPRIM (Military Occupation Specialty) -- See Table 25 in the ANSUR final report (pp. 50-51) for definitions.

APPENDIX B

MULTIVARIATE LIMIT ANALYSIS TABLES

LIST OF TABLES

- 1. Dimensions of a Small Headform (Method 1)
- 2. Dimensions of a Medium Headform (Method 1)
- 3. Dimensions of a Large Headform (Method 1)
- 4. Dimensions of a Small Headform (Method 2)
- 5. Dimensions of a Medium Headform (Method 2)
- 6. Dimensions of a Large Headform (Method 2)
- 7. Dimensions of a Small Headform (Method 3)
- 8. Dimensions of a Medium Headform (Method 3)
- 9. Dimensions of a Large Headform (Method 3)

Table 1. Dimensions of a Small Headform (Method 1)
Full Body Weight = 60.50 Kg Stature = 1623.0 mm

Tun Body Weight 00.30	ing Statute 10	Standard Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
Head Length*	Wican(min)	Deviation(mm)	185.900
Head Breadth*			142.450
Head Circumference*			538.100
Menton-Sellion*	214 102	10.610	112.150
neck circumference	314.193	18.618	310.000
bitragion chin arc	299.873	12.279	299.000
bitragion coronal arc	331.162	9.391	331.000
bitragion crinion arc	304.183	8.154	304.000
bitragion frontal arc	284.878	7.051	284.000
bitragion subman. arc	274.599	12.964	273.000
bitragion subnas. arc	272.883	9,553	272.000
bizygomatic breadth	129.929	3.978	130.000
ear breadth	34.665	2.509	34.000
ear length	59.401	4.113	59.000
ear length above tragion	57.741	7.206	59.000
ear protrusion	21.838	2.990	22.000
interpupillary breadth	61.381	3.002	61.000
H1 alare-back of head	189.227	4.565	189.100
H2 alare-top of head	145.167	6.263	145.500
H3 bigonial breadth	107.732	6.943	107.180
H4 biinfraorbitale breadth	66.515	4.425	66.010
H5 biocular breadth, max	117.819	4.695	117.400
H6 bitragion breadth	135.211	4.399	135.280
H7 bizygomatic breadth	134.051	4.531	133.830
H8 cheilion-back of head	177.533	6.780	176.600
H9 cheilion-top of head	175.366	5.932	175.050
H10 chin-back of head	185.350	7.683	184.600
H11 chin-top of head	200.824	6.583	200.400
H12 crinion-back of head	177.002	6.191	178.400
H13 crinion-top of head	40.519	8.919	40,600
H14 ectoorbitale-back of head	151.585	3.857	151.550
H15 ectoorbitale-top of head	110.328	4.924	110.150
H16 frontotemporale-back of head	163.908	3.220	164.350
H17 frontotemporale-top of head	83.257	6.125	83.650
H18 glabella-back of head	188.915	2.339	188.800
H19 glabella-top of head	87.258	6.363	87.200
H20 gonion-back of head	105.408	5.777	105.200
H21 gonion-top of head	179.943	5.955	179.450
H22 infraorbitale-back of head	173.837	3.928	174.000
H23 infraorbitale-top of head	122.690	5.011	122.750
-	53.844	3.956	53.780
H24 lip length H25 maximum frontal breadth	109.710	3.936 4.814	109.930
H26 menton_back of head	171.746	7.843	171.600

^{*} Median values for these measurements are actually multivariate 5th percentile values.

Table 1. Dimensions of a Small Headform (Method 1)
Full Body Weight = 60.50 Kg Stature = 1623.0 mm

		Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
H27 menton-crinion length	175.184	7.719	175.790
H28 menton-sellion length	112.535	2.827	112.580
H29 menton-subnasale length	67.823	3.557	67.850
H30 menton-top of head	215.178	5.919	215.100
H31 min. frontal breadth	102.278	3.968	102.020
H32 nose breadth	33.468	4.286	32.740
H33 nose protrusion	18.121	2.215	18.060
H34 pronasale-back of head	207.877	4.234	208.000
H35 pronasale-top of head	140.259	7.231	140.600
H36 sellion-back of head	187.050	2.809	187.000
H37 sellion top of head	103.985	5.789	104.300
H38 stomion-back of head	190.606	7.321	190.000
H39 stomion-top of head	173.278	6.151	173.000
H40 subnasale-back of head	193.817	4.998	194.000
H41 subnasale-sellion length	48.058	3.130	48.110
H42 subnasale-top of head	151.329	6.568	151.700
H43 tragion-back of head	95.973	3.632	96.150
H44 tragion-top of head	121.975	4.791	122.150
H45 zygion-back of head	126.171	5.392	126.100
H46 zygion-top of head	124.696	4.518	124.650
H47 zygofrontale-back of head	160.262	3.809	160.250
H48 zygofrontale-top of head	97.311	5,578	97.350

Table 2. Dimensions of a Medium Headform (Method 1)
Full Body Weight = 75.30 Kg Stature = 1731.0 mm

		Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
Head Length*			195.200
Head Breadth*			151.850
Head Circumference*			563.500
Menton-Sellion*			123.040
neck circumference	365,959	26.589	371.000
bitragion chin arc	321.386	12.009	322.000
bitragion coronal arc	351.832	9.894	352.000
bitragion crinion arc	323.061	8.802	323.000
bitragion frontal arc	301.178	7.800	300.000
bitragion subman. arc	298.792	14.512	299.000
bitragion subnas. arc	288.528	10.354	289.000
bizygomatic breadth	138.949	5.176	139.000
ear breadth	37.203	2.828	37.000
ear length	63.751	4.268	64.000
ear length above tragion	38.761	12.797	33.000
ear protrusion	23.497	3.168	23.000
interpupillary breadth	64.030	3.487	64.000
H1 alare-back of head	197.864	5.165	197.900
H2 alare-top of head	154.297	6.485	154.750
H3 bigonial breadth	117.082	7.890	117.220
H4 biinfraorbitale breadth	68.271	4.920	68.140
H5 biocular breadth, max	121.461	4.949	121.060
H6 bitragion breadth	143.415	5.388	143.150
H7 bizygomatic breadth	141.917	5.602	141.680
H8 cheilion-back of head	184.165	7.149	183.500
H9 cheilion-top of head	186.579	6.230	186.700
H10 chin-back of head	192.421	7.787	193.000
H11 chin-top of head	215.431	6.685	215.100
H12 crinion-back of head	182.681	7.618	183.800
H13 crinion-top of head	41.906	9.573	42.300
H14 ectoorbitale-back of head	158.836	3.459	158.550
H15 ectoorbitale-top of head	116.992	5.063	117.000
H16 frontotemporale-back of head	172.531	3.322	172.400
H17 frontotemporale-top of head	89.242	6.107	89.200
H18 glabella-back of head	197.688	2.831	197.700
H19 glabella-top of head	94.285	6.967	93.700
H20 gonion-back of head	115.087	6.283	114.900
H21 gonion-top of head	194.980	7.900	194.600
H22 infraorbitale-back of head	180.128	4.075	180.100
H23 infraorbitale-top of head	129.567	5.168	129.900
H24 lip length	55.351	4.247	55.320
H25 maximum frontal breadth	112.765	5.050	112.540
H26 menton_back of head	180.038	8.071	179.300

^{*} Median values for these measurements are actually multivariate 50th percentile values.

Table 2. Dimensions of a Medium Headform (Method 1)
Full Body Weight = 75.30 Kg Stature = 1731.0 mm

		Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
H27 menton-crinion length	189.065	8.507	188.420
H28 menton-sellion length	121.360	3.330	121.230
H29 menton-subnasale length	73.357	3.990	73.190
H30 menton-top of head	230.470	6.038	230.100
H31 min. frontal breadth	104.535	4.885 ·	104.670
H32 nose breadth	35.824	4.225	35.130
H33 nose protrusion	19.258	2.306	19.220
H34 pronasale-back of head	217.340	4.944	217.600
H35 pronasale-top of head	150.126	7.349	150.600
H36 sellion-back of head	195.348	3.260	195.300
H37 sellion top of head	110.377	5.912	110.500
H38 stomion-back of head	197.747	7.709	197.500
H39 stomion-top of head	184.835	6.446	185.000
H40 subnasale-back of head	201.503	5.703	201.900
H41 subnasale-sellion length	50.877	3.207	50.520
H42 subnasale-top of head	160.650	6.735	161.300
H43 tragion-back of head	98.506	4.260	98.600
H44 tragion-top of head	130.000	4.927	130.050
H45 zygion-back of head	131.697	5.122	131.550
H46 zygion-top of head	130.978	4.810	130.800
H47 zygofrontale-back of head	169.278	3.434	169.300
H48 zygofrontale-top of head	104.764	5.763	104.950

Table 3. Dimensions of a Large Headform (Method 1)
Full Body Weight = 88.10 Kg Stature = 1790.0 mm

		Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
Head Length*			210.700
Head Breadth*			161.250
Head Circumference*			595.250
Menton-Sellion*			133.170
neck circumference	395.218	18.973 ·	394.000
bitragion chin arc	337.325	12.367	338.000
bitragion coronal arc	365.396	11.520	365.000
bitragion crinion arc	337.929	10.815	338.000
bitragion frontal arc	316.147	9.031	316.000
bitragion subman. arc	314.985	14.060	315.000
bitragion subnas. arc	301.563	9.477	301.000
bizygomatic breadth	144.726	4.719	145.000
ear breadth	38.670	2.828	39.000
ear length	65.797	4.546	66.000
ear length above tragion	32.853	5.362	32.000
ear protrusion	24.497	3.497	24.000
interpupillary breadth	67.112	3.547	67.000
H1 alare-back of head	208.186	6.366	208,300
H2 alare-top of head	160.323	7.970	159.950
H3 bigonial breadth	123.630	7.153	123.820
H4 biinfraorbitale breadth	71.118	4.893	70.880
H5 biocular breadth, max	126.094	5.044	125.220
H6 bitragion breadth	148.867	5.225	148.630
H7 bizygomatic breadth	148.099	5.082	147.900
H8 cheilion-back of head	193.095	8.053	193.000
H9 cheilion-top of head	194.506	7.543	193.850
H10 chin-back of head	202.096	9.380	201.500
H11 chin-top of head	224.982	8.715	224.800
H12 crinion-back of head	192.443	8.621	193.100
H13 crinion-top of head	42.909	10.925	42.900
H14 ectoorbitale-back of head	167.034	4.960	167.200
H15 ectoorbitale-top of head	121.755	6.561	122.050
H16 frontotemporale-back of head	181.895	4.686	181.950
H17 frontotemporale-top of head	92.619	8.007	92.100
H18 glabella-back of head	209.121	4.559	209.100
H19 glabella-top of head	99.060	8.645	99.100
H20 gonion-back of head	122.746	7.545	122.450
H21 gonion-top of head	204.398	7.175	203.950
H22 infraorbitale-back of head	189.086	5.081	189.050
H23 infraorbitale-top of head	134.630	6.319	134.150
H24 lip length	57.856	4.014	57.690
H25 maximum frontal breadth	117.698	4.747	117.530
H26 menton_back of head	189.275	9.982	189.000

^{*} Median values for these measurements are actually multivariate 95th percentile values.

Table 3. Dimensions of a Large Headform (Method 1)
Full Body Weight = 88.10 Kg Stature = 1790.0 mm

		Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
H27 menton-crinion length	198.722	9.738	197.540
H28 menton-sellion length	126.742	5.355	125.960
H29 menton-subnasale length	77.675	5.013	77.510
H30 menton-top of head	241.059	8.394	241.100
H31 min. frontal breadth	109.770	4.657 ·	109.910
H32 nose breadth	38.341	5.010	37.150
H33 nose protrusion	19.299	2.528	19.340
H34 pronasale-back of head	227.948	6.483	227.500
H35 pronasale-top of head	156.857	9.340	156.800
H36 sellion-back of head	205.812	4.989	205.500
H37 sellion top of head	115.734	7.978	114.700
H38 stomion-back of head	208.126	8.482	207.700
H39 stomion-top of head	192.976	8.027	192.900
H40 subnasale-back of head	211.901	6.873	211.500
H41 subnasale-sellion length	51.964	3.657	51.870
H42 subnasale-top of head	167.085	8.157	166.600
H43 tragion-back of head	104.162	5.174	104.300
H44 tragion-top of head	135.090	6.046	134.850
H45 zygion-back of head	138.626	5.182	138.350
H46 zygion-top of head	135.564	6.105	135.600
H47 zygofrontale-back of head	178.642	4.853	178.900
H48 zygofrontale-top of head	109,526	7.002	109.400

Table 4. Dimensions of a Small Headform (Method 2)
Full Body Weight = 59.90 Kg Stature = 1615.0 mm

		O. 1 1	
Anthronometric Messuroment	Moon(mm)	Standard	
Anthropometric Measurement Head Length*	Mean(mm)	Deviation(mm)	Median(mm)
Head Breadth*			185.900
			142.450
Head Circumference*			535.490
H30 Menton-Top of Head*	212 222		214.420
neck circumference	313.223	17.436·	311.000
bitragion chin arc	298.249	11.658	298.000
bitragion coronal arc	330.360	8.192	330.000
bitragion crinion arc	303.005	7.146	303.000
bitragion frontal arc	284.051	6.830	283.000
bitragion subman. arc	272.452	13.113	272.000
bitragion subnas. arc	272.041	9.249	272.000
bizygomatic breadth	129.208	4.245	129.000
ear breadth	34.827	2.439	35.000
ear length	59.173	3.734	59.000
ear length above tragion	57.893	6.351	59.000
ear protrusion	21.904	3.154	22.000
interpupillary breadth	61.274	3.162	61.000
H1 alare-back of head	188.928	4.554	188.850
H2 alare-top of head	144.821	4.024	144.900
H3 bigonial breadth	106.955	6.657	106.510
H4 biinfraorbitale breadth	66.375	4.547	65.720
H5 biocular breadth, max	117.652	4.782	117.010
H6 bitragion breadth	134.710	3.967	134.520
H7 bizygomatic breadth	133.553	4.481	133.410
H8 cheilion-back of head	177.285	6.894	176.950
H9 cheilion-top of head	175.005	3.652	175.450
H10 chin-back of head	184.872	7.145	184.400
H11 chin-top of head	200.123	4.170	199.800
H12 crinion-back of head	177.185	6.094	178.100
H13 crinion-top of head	41.453	7.939	41.800
H14 ectoorbitale-back of head	151.191	3.857	151.400
H15 ectoorbitale-top of head	110.011	3.856	110.000
H16 frontotemporale-back of head	163.676	3.492	163.800
H17 frontotemporale-top of head	82.839	5.375	83.400
H18 glabella-back of head	188.692	2.637	188.800
H19 glabella-top of head	87.281	5.444	87.600
H20 gonion-back of head	104.855	6.008 *	104.700
H21 gonion-top of head	179.617	4.769	179.600
H22 infraorbitale-back of head	173.505	3.864	173.350
H23 infraorbitale-top of head	122.471	3.588	122.450
H24 lip length	53.665	4.002	53.410
H25 maximum frontal breadth	109.647	4.638	109.480
H26 menton_back of head	170.969	7.507	170.800

^{*} Median values for these measurements are actually multivariate 5th percentile values.

Table 4. Dimensions of a Small Headform (Method 2)
Full Body Weight = 59.90 Kg Stature = 1615.0 mm

		Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
H27 menton-crinion length	173.748	7.842	173.310
H28 menton-sellion length	112.346	4.405	111.600
H29 menton-subnasale length	67.881	3.935	67.050
H31 min. frontal breadth	101.730	4.297	101.490
H32 nose breadth	33.746	4.450	32.720
H33 nose protrusion	18.071	2.120	17.820
H34 pronasale-back of head	207.534	4.351	207.800
H35 pronasale-top of head	140.038	5.094	139.800
H36 sellion-back of head	186.775	3.112	186.800
H37 sellion top of head	103.759	4.793	104.100
H38 stomion-back of head	190.334	6.980	189.900
H39 stomion-top of head	172.929	3.939	173.200
H40 subnasale-back of head	193.372	4.757	193.700
H41 subnasale-sellion length	47.816	3.292	47.600
H42 subnasale-top of head	150.922	4.500	151.200
H43 tragion-back of head	95.711	3.876	95.700
H44 tragion-top of head	121.929	3.668	122.150
H45 zygion-back of head	126.093	5.566	125.950
H46 zygion-top of head	124.351	3.611	124.350
H47 zygofrontale-back of head	159.797	3.850	159.650
H48 zygofrontale-top of head	97.231	4.643	97.350

Table 5. Dimensions of a Medium Headform (Method 2)
Full Body Weight = 74.70 Kg Stature = 1726.0 mm

Tun Dody Weight 71.701	as others in	Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
Head Length*			195.200
Head Breadth*	•		152.260
Head Circumference*			563.500
H30 Menton-Top of Head*			230.200
neck circumference	365.066	27.949 ·	371.000
bitragion chin arc	319.584	11.749	320.000
bitragion coronal arc	352.635	8.908	353.000
bitragion crinion arc	323.218	8.881	324.000
bitragion frontal arc	301.061	8.023	300.000
bitragion subman. arc	297.005	14.124	297.000
bitragion subnas. arc	288.244	9.822	288.000
bizygomatic breadth	138.579	5.003	138.000
ear breadth	37.015	2.747	37.000
ear length	63.772	4.197	64.000
ear length above tragion	38.893	12.934	33.000
ear protrusion	23.741	3.270	24.000
interpupillary breadth	64.152	3.325	64.000
H1 alare-back of head	197.274	4.971	197.300
H2 alare-top of head	154.837	4.550	154.950
H3 bigonial breadth	116.702	7.999	116.240
H4 biinfraorbitale breadth	68.034	4.899	67.940
H5 biocular breadth, max	121.208	4.806	120.790
H6 bitragion breadth	142.892	5.287	142.800
H7 bizygomatic breadth	141.580	5.571	141.510
H8 cheilion-back of head	183.216	6.549	183.100
H9 cheilion-top of head	186.833	3.835	186.850
H10 chin-back of head	191.612	7.083	191.800
H11 chin-top of head	215.530	4.070	215.400
H12 crinion-back of head	183.606	7.381	184.300
H13 crinion-top of head	43.126	8.951	43.100
H14 ectoorbitale-back of head	158.570	3.510	158.450
H15 ectoorbitale-top of head	117.635	4.028	117.800
H16 frontotemporale-back of head	172.643	3.164	172.450
H17 frontotemporale-top of head	90.358	5.352	90.600
H18 glabella-back of head	197.765	2.764	197.800
H19 glabella-top of head	95.463	5.746	95.100
H20 gonion-back of head	114.677	6.726	114.800
H21 gonion-top of head	194.669	6.877	194.350
H22 infraorbitale-back of head	179.789	3.937	179.600
H23 infraorbitale-top of head	130.308	3.895	130.400
H24 lip length	55.495	4.191	55.640
H25 maximum frontal breadth	112.520	4.728	111.870
H26 menton_back of head	179.444	7.565	178.800

^{*} Median values for these measurements are actually multivariate 50th percentile values.

Table 5. Dimensions of a Medium Headform (Method 2)
Full Body Weight = 74.70 Kg Stature = 1726.0 mm

		Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
H27 menton-crinion length	187.225	8.849	186.090
H28 menton-sellion length	119.738	4.598	119.660
H29 menton-subnasale length	72.300	4.161	72.160
H31 min. frontal breadth	104.396	4.618	104.600
H32 nose breadth	35.787	4.400 .	34.910
H33 nose protrusion	18.870	2.316	18.670
H34 pronasale-back of head	216.677	5.070	216.500
H35 pronasale-top of head	151.010	5.683	151.000
H36 sellion-back of head	195.176	3.136	194.800
H37 sellion top of head	111.482	4.657	111.400
H38 stomion-back of head	196.881	7.085	196.100
H39 stomion-top of head	185.274	4.101	185.100
H40 subnasale-back of head	201.099	5.488	201.200
H41 subnasale-sellion length	50.310	3.688	50.150
H42 subnasale-top of head	161.230	4.818	161.500
H43 tragion-back of head	98.195	4.253	98.200
H44 tragion-top of head	130.347	3.955	130.400
H45 zygion-back of head	131.381	4.921	131.300
H46 zygion-top of head	131.355	4.325	131.250
H47 zygofrontale-back of head	169.281	3.402	169.100
H48 zygofrontale-top of head	105.588	4.730	105.750

Table 6. Dimensions of a Large Headform (Method 2)
Full Body Weight = 88.10 Kg Stature = 1792.0 mm

Full Body Weight – 88,10 K	g Statule - 17	Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
Head Length*			210.700
Head Breadth*			161.250
Head Circumference*			595.250
H30 Menton-Top of Head*			246.810
neck circumference	395.503	20.139 ·	395.000
bitragion chin arc	337.076	12.356	336.000
bitragion coronal arc	367.812	10.488	368.000
bitragion crinion arc	339.401	10.246	339.000
bitragion frontal arc	316.782	8.878	316.000
bitragion subman. arc	315.030	14.729	315.000
bitragion subnas. arc	301.711	9.755	301.000
bizygomatic breadth	144.751	5.159	144.000
ear breadth	38.624	2.852	39.000
ear length	65.746	4.653	66.000
ear length above tragion	32.609	4.984	32.000
ear protrusion	24.482	3,434	24.000
interpupillary breadth	67.168	3.601	67.000
H1 alare-back of head	207.381	6.752	207.150
H2 alare-top of head	162.237	6.424	161.500
H3 bigonial breadth	124.055	7.362	124.130
H4 biinfraorbitale breadth	70.855	4.973	70.900
H5 biocular breadth, max	125.791	5.359	124.870
H6 bitragion breadth	148.953	5.657	148.510
H7 bizygomatic breadth	148.271	5,533	147.900
H8 cheilion-back of head	192.060	8.376	191.250
H9 cheilion-top of head	196.251	6.106	195.550
H10 chin-back of head	201.218	9.328	200.700
H11 chin-top of head	226.744	7.122	226.100
H12 crinion-back of head	193.659	7.671	194.100
H13 crinion-top of head	44.958	10.324	44.700
H14 ectoorbitale-back of head	166.936	5.172	166.900
H15 ectoorbitale-top of head	123.530	5.628	123.650
H16 frontotemporale-back of head	181.961	4.870	182.050
H17 frontotemporale-top of head	94.747	7.450	95.050
H18 glabella-back of head	209.061	4.827	209.000
H19 glabella-top of head	101.582	7.264	101.300
H20 gonion-back of head	122.186	7.472	121.450
H21 gonion-top of head	205.685	6.404	205.750
H22 infraorbitale-back of head	188.607	5.429	188.050
H23 infraorbitale-top of head	136.342	5.398	136.050
H24 lip length	58.093	3.921	57.990
H25 maximum frontal breadth	117.574	4.903	117.480
H26 menton_back of head	188.447	9.814	187.100

^{*} Median values for these measurements are actually multivariate 95th percentile values.

Table 6. Dimensions of a Large Headform (Method 2)
Full Body Weight = 88.10 Kg Stature = 1792.0 mm

		Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
H27 menton-crinion length	198.160	9.868	197.160
H28 menton-sellion length	126.031	5.608	125.550
H29 menton-subnasale length	77.323	5.004	77.170
H31 min. frontal breadth	109.643	4.907	109.570
H32 nose breadth	38.469	4.832 ·	37.350
H33 nose protrusion	19.189	2.471	19.110
H34 pronasale-back of head	227.137	6.680	226.400
H35 pronasale-top of head	158.963	7.706	158.700
H36 sellion-back of head	205.496	5.248	205.200
H37 sellion top of head	118.035	6.743	117.500
H38 stomion-back of head	207.213	8.683	206.300
H39 stomion-top of head	194.758	6.415	193.600
H40 subnasale-back of head	211.077	7.177	210.400
H41 subnasale-sellion length	51.515	3.806	51.240
H42 subnasale-top of head	169.012	6.611	168.100
H43 tragion-back of head	103.613	5.210	103.500
H44 tragion-top of head	136.522	5.112	136.300
H45 zygion-back of head	138.053	5.537	137.800
H46 zygion-top of head	137.088	5.402	137.100
H47 zygofrontale-back of head	178.515	5.072	178.600
H48 zygofrontale-top of head	111.472	6.070	111.100

Table 7. Dimensions of a Small Headform (Method 3)
Full Body Weight = 57.60 Kg Stature = 1612.0 mm

		Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
Head Length*	· · · · · · · · · · · · · · · · · · ·		185.060
Head Breadth*			142.450
Head Circumference*			531.750
neck circumference	311.325	17.914	309.000
bitragion chin arc	298.345	11.872 [.]	298.000
bitragion coronal arc	328.716	9.658	329.000
bitragion crinion arc	301.178	8.431	301.000
bitragion frontal arc	282.350	7.583	283.000
bitragion subman. arc	273.239	13.041	272.000
bitragion subnas. arc	271.716	9.576	270.000
bizygomatic breadth	129.005	4.477	128.000
ear breadth	34.888	2.358	35.000
ear length	59.802	3.327	60.000
ear length above tragion	58.112	7.295	60.000
ear protrusion	22.091	3.185	22.000
interpupillary breadth	61.168	3.237	61.000
H1 alare-back of head	187.689	4.781	187.900
H2 alare-top of head	144.266	6.603	144.300
H3 bigonial breadth	106.778	6.663	106.230
H4 biinfraorbitale breadth	65.717	4.775	65.240
H5 biocular breadth, max	117.119	4.700	116.540
H6 bitragion breadth	134.426	4.906	134.230
H7 bizygomatic breadth	133.120	4.885	132.620
H8 cheilion-back of head	175.921	6.915	175.050
H9 cheilion-top of head	174.319	6.620	174.700
H10 chin-back of head	184.153	7.611	183.600
H11 chin-top of head	199.406	7.632	199.700
H12 crinion-back of head	175.476	6.518	175.700
H13 crinion-top of head	41.063	9.103	41.200
H14 ectoorbitale-back of head	150.018	3.570	149.600
H15 ectoorbitale-top of head	109.641	5.333	109.900
H16 frontotemporale-back of head	162.464	3.327	162.100
H17 frontotemporale-top of head	82.797	6.242	83.400
H18 glabella-back of head	187.411	2.814	187.300
H19 glabella-top of head	87.238	6.587	87.200
H20 gonion-back of head	104.269	6.252	104.100
H21 gonion-top of head	179.482	5.715	179.850
H22 infraorbitale-back of head	172.241	3.951	172.000
H23 infraorbitale-top of head	122.069	5.283	122.500
H24 lip length	54.294	3.903	53.870
H25 maximum frontal breadth	108.969	4.703	108.810
H26 menton_back of head	170.480	8.113	170.100
H27 menton-crinion length	173.314	8.597	172.310

^{*} Median values for these measurements are actually multivariate 5th percentile values.

Table 7. Dimensions of a Small Headform (Method 3)
Full Body Weight = 57.60 Kg Stature = 1612.0 mm

		Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
H28 menton-sellion length	111.629	5.801	111.380
H29 menton-subnasale length	67.288	5.100	66.810
H30 menton-top of head	213.848	7.725	214.100
H31 min. frontal breadth	101.291	4.250	101.000
H32 nose breadth	33.655	4.329 [.]	32.600
H33 nose protrusion	17.980	2.114	17.820
H34 pronasale-back of head	206.311	4.457	206.600
H35 pronasale-top of head	139.650	7.242	139.400
H36 sellion-back of head	185.613	3.143	185.500
H37 sellion top of head	103.542	6.067	103.700
H38 stomion-back of head	189.267	7.427	188.200
H39 stomion-top of head	172.188	7.000	172.300
H40 subnasale-back of head	192.243	5.200	192.700
H41 subnasale-sellion length	47.609	3.385	47.660
H42 subnasale-top of head	150.471	6.812	150.800
H43 tragion-back of head	94.878	3.922	94.900
H44 tragion-top of head	121.331	5.075	121.450
H45 zygion-back of head	125.045	5.744	124.800
H46 zygion-top of head	124.120	4.817	124.050
H47 zygofrontale-back of head	158.836	3.778	158.550
H48 zygofrontale-top of head	96.842	5.896	97.350

Table 8. Dimensions of a Medium Headform (Method 3)
Full Body Weight = 72.40 Kg Stature = 1725.0 mm

		Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
Head Length*			195.200
Head Breadth*			151.850
Head Circumference*			558.140
neck circumference	360.492	30.003	368.000
bitragion chin arc	317.645	12.802	318.000
bitragion coronal arc	347.411	10.865	348.000
bitragion crinion arc	319.340	9.114	320.000
bitragion frontal arc	297.959	7.774	298.000
bitragion subman. arc	294.624	15.300	294.000
bitragion subnas. arc	286.640	10.516	288.000
bizygomatic breadth	137.695	4.363	138.000
ear breadth	36.980	2.665	37.000
ear length	63.142	4.478	63.000
ear length above tragion	39.426	13.085	33.000
ear protrusion	23.599	3.263	23.000
interpupillary breadth	63.635	3.724	63.000
H1 alare-back of head	196.919	5.145	196.600
H2 alare-top of head	152.798	7.195	153.150
H3 bigonial breadth	115.963	8.781	115.270
H4 biinfraorbitale breadth	67.565	4.904	66.890
H5 biocular breadth, max	120.619	4.907	120.270
H6 bitragion breadth	142.428	5.149	142.010
H7 bizygomatic breadth	140.810	4.972	140.600
H8 cheilion-back of head	183.371	7.246	182.900
H9 cheilion-top of head	184.770	6.856	184.650
H10 chin-back of head	191.388	8.187	191.000
H11 chin-top of head	212.884	8.176	212.800
H12 crinion-back of head	181.168	7.648	181.800
H13 crinion-top of head	41.119	10.178	39.900
H14 ectoorbitale-back of head	158.103	3.188	158.150
H15 ectoorbitale-top of head	116.082	5.688	115.700
H16 frontotemporale-back of head	171.769	2.961	171.600
H17 frontotemporale-top of head	88.405	7.321	88.100
H18 glabella-back of head	196.976	2.321	196.800
H19 glabella-top of head	93.467	7.414	93.100
H20 gonion-back of head	114.626	6.461	114.150
H21 gonion-top of head	192.510	8.102	192.550
H22 infraorbitale-back of head	179.272	3.998	179.100
H23 infraorbitale-top of head	128.614	5.755	128.750
H24 lip length	54.928	4.366	54.630
H25 maximum frontal breadth	112.148	5.262	111.210
H26 menton_back of head	178.981	8.230	178.700
H27 menton-crinion length	186.923	9.900	187.020

^{*} Median values for these measurements are actually multivariate 50th percentile values.

Table 8. Dimensions of a Medium Headform (Method 3)
Full Body Weight = 72.40 Kg Stature = 1725.0 mm

		Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
H28 menton-sellion length	118.808	5.762	118.730
H29 menton-subnasale length	72.092	4.975	71.990
H30 menton-top of head	227.529	8.011	227.100
H31 min. frontal breadth	103.746	4.721	103.440
H32 nose breadth	35.763	4.382	35.130
H33 nose protrusion	18.623	2.574	18.620
H34 pronasale-back of head	216.153	4.959	216.200
H35 pronasale-top of head	148.792	8.287	148.800
H36 sellion-back of head	194.451	2.656	194.500
H37 sellion top of head	110.027	6.522	109.900
H38 stomion-back of head	196.928	7.994	195.800
H39 stomion-top of head	183.008	7.292	182.800
H40 subnasale-back of head	201.004	5.881	200.800
H41 subnasale-sellion length	49.886	3.588	49.830
H42 subnasale-top of head	159.192	7.541	159.800
H43 tragion-back of head	98.300	4.037	98.100
H44 tragion-top of head	128.596	5.622	128.650
H45 zygion-back of head	131.435	4.465	131.350
H46 zygion-top of head	129.453	4.722	129.650
H47 zygofrontale-back of head	168.382	3.473	168.550
H48 zygofrontale-top of head	103.958	6.699	103.650

Table 9. Dimensions of a Large Headform (Method 3)
Full Body Weight = 86.10 Kg Stature = 1781.0 mm

		Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
Head Length*			207.840
Head Breadth*			161.250
Head Circumference*			595.250
neck circumference	392.178	22.097	392.000
bitragion chin arc	335.178	12.652 ·	335.000
bitragion coronal arc	365.365	11.532	365.000
bitragion crinion arc	338.183	10.675	338.000
bitragion frontal arc	315.431	9.022	315.000
bitragion subman. arc	313.005	15.196	313,000
bitragion subnas. arc	300.858	10:221	300.000
bizygomatic breadth	144.680	5.200	144.000
ear breadth	38.345	3.006	38.000
ear length	65.756	4.819	66.000
ear length above tragion	33.528	6.909	32.000
ear protrusion	24.487	3.529	24.000
interpupillary breadth	67.030	3.451	67.000
H1 alare-back of head	207.664	5.937	207.450
H2 alare-top of head	159.521	7.658	159.200
H3 bigonial breadth	123.009	8.048	123.200
H4 biinfraorbitale breadth	70.913	5.045	70.160
H5 biocular breadth, max	125.844	5.388	124.800
H6 bitragion breadth	149.152	5.606	149.360
H7 bizygomatic breadth	148.354	5.653	147.900
H8 cheilion-back of head	192.580	7.495	191.950
H9 cheilion-top of head	193.123	7.539	192.400
H10 chin-back of head	202.527	8.597	202.200
H11 chin-top of head	222.506	9.262	222.100
H12 crinion-back of head	191.897	7.798	192.600
H13 crinion-top of head	42.496	10.600	42.700
H14 ectoorbitale-back of head	166.763	4.559	166.550
H15 ectoorbitale-top of head	121.727	6.048	121.300
H16 frontotemporale-back of head	181.581	4.267	181.550
H17 frontotemporale-top of head	93.034	7.614	92.700
H18 glabella-back of head	208.447	3.972	208.500
H19 glabella-top of head	99.089	8.013	99.100
H20 gonion-back of head	123.120	7.180	123.150
H21 gonion-top of head	203.616	7.467	202.800
H22 infraorbitale-back of head	188.542	4.756	188.300
H23 infraorbitale-top of head	134.525	6.010	133.900
H24 lip length	57.940	4.094	57.900
H25 maximum frontal breadth	117.578	4.872	117.480
H26 menton_back of head	190.196	9.212	189.600
H27 menton-crinion length	196.311	10.780	195.800

^{*} Median values for these measurements are actually multivariate 95th percentile values.

Table 9. Dimensions of a Large Headform (Method 3)
Full Body Weight = 86.10 Kg Stature = 1781.0 mm

		Standard	
Anthropometric Measurement	Mean(mm)	Deviation(mm)	Median(mm)
H28 menton-sellion length	123.862	6.457	123.970
H29 menton-subnasale length	75.434	5.851	75.580
H30 menton-top of head	238.299	9.214	237.800
H31 min. frontal breadth	109.820	4.835	110.120
H32 nose breadth	37.896	4.577 .	36.850
H33 nose protrusion	19.322	2.411	19.330
H34 pronasale-back of head	227.458	5.899	226.900
H35 pronasale-top of head	155.840	9.000	156.100
H36 sellion-back of head	205.234	4.498	205.300
H37 sellion top of head	115.676	7.443	114.700
H38 stomion-back of head	207.660	7.963	207.100
H39 stomion-top of head	191.313	8.098	191.000
H40 subnasale-back of head	211.480	6.391	211.500
H41 subnasale-sellion length	51.191	3.608	51.010
H42 subnasale-top of head	166.237	7.892	166.400
H43 tragion-back of head	104.120	4.845	104.300
H44 tragion-top of head	134.771	5.816	134.100
H45 zygion-back of head	138.177	5.095	138.150
H46 zygion-top of head	135.189	5.651	134.900
H47 zygofrontale-back of head	178.246	4.549	178.050
H48 zygofrontale-top of head	109.584	6.461	109.550

APPENDIX C

HEADFORM SKIN & SKULL EXTERIOR DIMENSION TABLES

LIST OF TABLES

- 1. Small Headform Skin Exterior Dimensions
- 2. Small Headform Skull Exterior Dimensions
- 3. Medium Headform Skin Exterior Dimensions
- 4. Medium Headform Skull Exterior Dimensions
- 5. Large Headform Skin Exterior Dimensions
- 6. Large Headform Skull Exterior Dimensions

TABLE 1. SMALL HEADFORM SKIN - EXTERIOR DIMENSIONS

LEVEL	- 5	Z = -4.52	20 (in)	LEVEL	-4	Z = -4.0	00 (in)
θ (deg)	R(in)	X(in)	Y(in)	θ (deg)	R(in)	X(in)	Y(in)
0 10	1.699 1.704	1.699 1.678	0.000	0 10	1.750 1.735	1.750 1.709	0.000
20 30	1.723 1.755	1.619 1.520	0.589 0.878	20 30	1.713 1.718	1.610 1.487	0.586 0.859
40 50	1.798 1.855	1.378 1.192	1.156 1.421	40 50	1.765 1.831	1.352 1.177	1.134 1.402
60 70	1.921 1.999	0.961	1.664 1.878	60 70	1.899 1.976	0.949	1.645 1.857
80	2.086	0.362	2.054 2.178	80 90	2.060 2.152	0.358	2.029 2.152
90 100	2.178 2.275	-0.395	2.241	100	2.246	-0.390	2.211
110 120	2.373	-0.812 -1.235	2.230 2.139	110 120	2.344	-0.802 -1.221	2.203
130 140	2.559	-1.645 -2.021	1.960 1.696	130 140	2.535	-1.629 -2.005	1.942
150 160	2.704	-2.342 -2.587	1.352	150 160	2.681	-2.322 -2.563	1.340
170 180	2.784 2.795	-2.742 -2.795	0.483 0.000	170 180	2.754 2.764	-2.712 -2.764	0.478 0.000
LEVEL		Z = -3.00		LEVEL		z = -2.00	
		Z= -3.00 X(in)				Z= -2.00 X(in)	
θ(deg) 	R(in) 3.535	X(in) 3.535	Y(in) 0.000	θ(deg) 0	R(in) 3.758	X(in) 3.758	Y(in) 0.000
θ(deg) 0 10 20	R(in) 3.535 3.392 3.167	X(in) 3.535 3.341 2.976	Y(in) 0.000 0.589 1.083	θ(deg) 0 10 20	R(in) 3.758 3.624 3.303	X(in) 3.758 3.569 3.103	Y(in) 0.000 0.629 1.130
θ(deg) 0 10 20 30 40	R(in) 3.535 3.392 3.167 2.891 2.623	X(in) 3.535 3.341 2.976 2.504 2.010	Y(in) 0.000 0.589 1.083 1.446 1.686	θ(deg) 0 10 20 30 40	R(in) 3.758 3.624 3.303 2.979 2.756	X(in) 3.758 3.569 3.103 2.580 2.111	Y(in) 0.000 0.629 1.130 1.490 1.772
θ(deg) 0 10 20 30 40 50 60	R(in) 3.535 3.392 3.167 2.891 2.623 2.416 2.214	X(in) 3.535 3.341 2.976 2.504 2.010 1.553 1.107	Y(in) 0.000 0.589 1.083 1.446 1.686 1.851 1.917	θ(deg) 0 10 20 30 40 50 60	R(in) 3.758 3.624 3.303 2.979 2.756 2.601 2.494	X(in) 3.758 3.569 3.103 2.580 2.111 1.672 1.247	Y(in) 0.000 0.629 1.130 1.490 1.772 1.992 2.160
θ(deg) 0 10 20 30 40 50 60 70 80	R(in) 3.535 3.392 3.167 2.891 2.623 2.416 2.214 1.995 2.050	X(in) 3.535 3.341 2.976 2.504 2.010 1.553 1.107 0.682 0.356	Y(in) 0.000 0.589 1.083 1.446 1.686 1.851 1.917 1.875 2.019	θ(deg) 0 10 20 30 40 50 60 70 80	R(in) 3.758 3.624 3.303 2.979 2.756 2.601 2.494 2.426 2.263	X(in) 3.758 3.569 3.103 2.580 2.111 1.672 1.247 0.830 0.393	Y(in) 0.000 0.629 1.130 1.490 1.772 1.992 2.160 2.280 2.229
θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 3.535 3.392 3.167 2.891 2.623 2.416 2.214 1.995 2.050 2.126 2.221	X(in) 3.535 3.341 2.976 2.504 2.010 1.553 1.107 0.682 0.356 0.000 -0.386	Y(in) 0.000 0.589 1.083 1.446 1.686 1.851 1.917 1.875 2.019 2.126 2.187	θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 3.758 3.624 3.303 2.979 2.756 2.601 2.494 2.426 2.263 2.217 2.282	X(in) 3.758 3.569 3.103 2.580 2.111 1.672 1.247 0.830 0.393 0.000 -0.396	Y(in) 0.000 0.629 1.130 1.490 1.772 1.992 2.160 2.280 2.229 2.217 2.248
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120	R(in) 3.535 3.392 3.167 2.891 2.623 2.416 2.214 1.995 2.050 2.126 2.221 2.311 2.403	X(in) 3.535 3.341 2.976 2.504 2.010 1.553 1.107 0.682 0.356 0.000 -0.386 -0.791 -1.201	Y(in) 0.000 0.589 1.083 1.446 1.686 1.851 1.917 1.875 2.019 2.126 2.187 2.172 2.081	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120	R(in) 3.758 3.624 3.303 2.979 2.756 2.601 2.494 2.426 2.263 2.217 2.282 2.363 2.448	X(in) 3.758 3.569 3.103 2.580 2.111 1.672 1.247 0.830 0.393 0.000 -0.396 -0.808 -1.224	Y(in) 0.000 0.629 1.130 1.490 1.772 1.992 2.160 2.280 2.229 2.217 2.248 2.221 2.120
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 3.535 3.392 3.167 2.891 2.623 2.416 2.214 1.995 2.050 2.126 2.221 2.311 2.403 2.491 2.564	X(in) 3.535 3.341 2.976 2.504 2.010 1.553 1.107 0.682 0.356 0.000 -0.386 -0.791 -1.201 -1.601 -1.964	Y(in) 0.000 0.589 1.083 1.446 1.686 1.851 1.917 1.875 2.019 2.126 2.187 2.172 2.081 1.908 1.648	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 3.758 3.624 3.303 2.979 2.756 2.601 2.494 2.426 2.263 2.217 2.282 2.363 2.448 2.528 2.587	X(in) 3.758 3.569 3.103 2.580 2.111 1.672 1.247 0.830 0.393 0.000 -0.396 -0.808 -1.224 -1.625 -1.982	Y(in) 0.000 0.629 1.130 1.490 1.772 1.992 2.160 2.280 2.229 2.217 2.248 2.221 2.120 1.936 1.663
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 3.535 3.392 3.167 2.891 2.623 2.416 2.214 1.995 2.050 2.126 2.221 2.311 2.403 2.491	X(in) 3.535 3.341 2.976 2.504 2.010 1.553 1.107 0.682 0.356 0.000 -0.386 -0.791 -1.201 -1.601	Y(in) 0.000 0.589 1.083 1.446 1.686 1.851 1.917 1.875 2.019 2.126 2.187 2.172 2.081 1.908	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 3.758 3.624 3.303 2.979 2.756 2.601 2.494 2.426 2.263 2.217 2.282 2.363 2.448 2.528	X(in) 3.758 3.569 3.103 2.580 2.111 1.672 1.247 0.830 0.393 0.000 -0.396 -0.808 -1.224 -1.625	Y(in) 0.000 0.629 1.130 1.490 1.772 1.992 2.160 2.280 2.229 2.217 2.248 2.221 2.120 1.936

TABLE 1. SMALL HEADFORM SKIN - EXTERIOR DIMENSIONS (cont.)

		Z = -1.00 X (in)			0 R(in)	Z= 0.00 X(in)	•
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180	4.308 3.607 3.484 3.278 3.103 2.944 2.796 2.668 2.570 2.415 2.591 2.715 2.654 2.742 2.805 2.821 2.821 2.811 2.808	4.308 3.553 3.274 2.839 2.377 1.892 1.398 0.912 0.446 0.000 -0.450 -0.929 -1.327 -1.763 -2.149 -2.447 -2.651 -2.768 -2.808	0.000 0.626 1.191 1.639 1.994 2.255 2.421 2.507 2.531 2.415 2.552 2.552 2.299 2.101 1.803 1.413 0.965 0.488 0.000	0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180	4.063 3.430 3.334 3.253 3.170 3.092 3.003 2.901 2.795 2.702 2.839 2.975 2.985 3.111 3.212 3.262 3.280 3.286 3.290	3.378 3.133 2.817 2.428 1.987 1.501	0.000 0.596 1.140 1.626 2.038 2.368 2.601 2.726 2.753 2.702 2.796 2.796 2.585 2.383 2.065 1.631 1.122 0.571 0.000
		Z= 1.00 X(in)				Z= 2.00 X(in)	
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180	3.741 3.620 3.441 3.539 3.376 3.206 3.100 3.013 2.945 2.901 2.968 3.078 3.225 3.386 3.522 3.598 3.654 3.663	3.741 3.565 3.234 3.065 2.586 2.061 1.550 1.031 0.511 0.000 -0.515 -1.053 -1.612 -2.177 -2.698 -3.116 -3.415 -3.599 -3.663	0.000 0.629 1.177 1.770 2.170 2.456 2.685 2.832 2.900 2.901 2.923 2.892 2.793 2.892 2.793 2.594 2.264 1.799 1.243 0.635 0.000	0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180	3.708 3.724 3.690 3.536 3.321 3.149 3.038 2.969 2.928 2.912 2.978 3.090 3.401 3.535 3.613 3.652 3.675 3.685	3.708 3.668 3.467 3.062 2.544 2.024 1.519 1.015 0.508 0.000 -0.517 -1.057 -1.620 -2.186 -2.708 -3.129 -3.432 -3.619 -3.685	0.000 0.647 1.262 1.768 2.135 2.413 2.631 2.790 2.883 2.912 2.933 2.904 2.806 2.605 2.272 1.806 1.249 0.638 0.000

TABLE 1. SMALL HEADFORM SKIN - EXTERIOR DIMENSIONS (cont.)

LEVEL	+3	z = 3.00	00 (in)	LEVEL +4	z=4.0	00 (in)
θ(deg)	R(in)	X(in)	Y(in)	θ (deg) R(in)	X(in)	Y(in)
0	3.376	3.376	0.000	0 2.358	2.358	0.000
10	3.396	3.344	0.590	10 2.397	2.361	0.416
20	3.382	3.178	1.157	20 2.433	2.287	0.832
30	3.283	2.843	1.642	30 2.406	2.084	1.203
40	3.124	2.393	2.008	40 2.337	1.790	1.502
50	2.981	1.916	2.284	50 2.283	1.467	1.749
60	2.896	1.448	2.508	60 2.272	1.136	1.968
70	2.847	0.974	2.676	70 2.276	0.779	2.139
80	2.821	0.490	2.778	80 2.285	0.397	2.250
90	2.813	0.000	2.813	90 2.289	0.000	2.289
100	2.877	-0.500	2.834	100 2.346	-0.407	2.310
110	2.976	-1.018	2.796	110 2.419	-0.827	2.274
120	3.096	-1.548	2.681	120 2.502	-1.251	2.167
130	3.214	-2.066	2.462	130 2.574	-1.655	1.972
140	3.303	-2.530	2.123	140 2.618	-2.005	1.683
150	3.347	-2.899	1.674	150 2.621	-2.270	1.311
160	3.363	-3.160	1.150	160 2.603	-2.446	0.890
170	3.369	-3.318	0.585	170 2.585	-2.546	0.449
180	3.372	-3.372	0.000	180 2.581	-2.581	0.000

Notes:

- 1. Apex is located at (-0.180,0.000,4.800) for (X,Y,Z) or (0.180,180,4.800) for (R, θ ,Z).
- 2. Headform is symmetrical about the mid-sagittal plane.

TABLE 2. SMALL HEADFORM SKULL - EXTERIOR DIMENSIONS

LEVEL	-4	Z = -3.00	00 (in)	LEVEL	-3	Z = -2.0	00 (in)
θ (deg)	R(in)	X(in)	Y(in)	θ (deg)	R(in)	X(in)	Y(in)
0	3.159	3.159	0.000	0	3.195	3.195	0.000
10	3.028	2.985	0.510	10	3.093	3.049	0.521
20	2.793	2.634	0.929	20	2.901	2.736	0.965
. 30	2.552	2.227	1.246	30	2.697	2.353	1.317
40	2.338	1.814	1.475	40	2.500	1.939	1.577
50	2.164	1.416	1.636	50	2.326	1.523	1.758
60				60	2.196	1.124	1.886
70				70	2.080	0.731	1.947
80				80			**********
90				90			
100				100			
110				110			
120				120			
130				130			
140				140			
150				150			
160		-		160			 -
170			-	170			
180				180			
T.EVET.	-2	Z= -1 00)((in)	T.EVET.	_1	7= -0 3	26 (in)
LEVEL		Z = -1.00		LEVEL		Z = -0.3	
LEVEL θ(deg)		Z= -1.00 X(in)	00 (in) Y(in)		-1 R(in)		26 (in) Y(in)
θ(deg)	R(in)	X(in)	Y(in)	θ(deg)	R(in)	X(in)	Y(in)
	R(in) 3.204	X(in) 3.204	Y(in) 0.000	θ(deg) 0	R(in) 3.196	X(in) 3.196	Y(in) 0.000
θ(deg) 0	R(in)	X(in) 3.204 3.091	Y(in) 0.000 0.528	θ(deg) 0 10	R(in) 3.196 3.152	X(in) 3.196 3.107	Y(in) 0.000 0.531
θ(deg) 0 10	R(in) 3.204 3.136 2.995	X(in) 3.204 3.091 2.824	Y(in) 0.000 0.528 0.996	θ(deg) 0 10 20	R(in) 3.196 3.152 3.046	X(in) 3.196 3.107 2.873	Y(in) 0.000 0.531 1.013
θ(deg) 0 10 20	R(in) 3.204 3.136 2.995 2.825	X(in) 3.204 3.091 2.824 2.466	Y(in) 0.000 0.528 0.996 1.380	θ(deg) 0 10 20 30	R(in) 3.196 3.152 3.046 2.895	X(in) 3.196 3.107 2.873 2.527	Y(in) 0.000 0.531 1.013 1.414
θ(deg) 0 10 20 30	R(in) 3.204 3.136 2.995	X(in) 3.204 3.091 2.824 2.466 2.051	Y(in) 0.000 0.528 0.996	θ(deg) 0 10 20	R(in) 3.196 3.152 3.046 2.895 2.719	X(in) 3.196 3.107 2.873 2.527 2.109	Y(in) 0.000 0.531 1.013 1.414 1.715
θ(deg) 0 10 20 30 40	R(in) 3.204 3.136 2.995 2.825 2.643	X(in) 3.204 3.091 2.824 2.466	Y(in) 0.000 0.528 0.996 1.380 1.668	θ(deg) 0 10 20 30 40 50	R(in) 3.196 3.152 3.046 2.895 2.719 2.573	X(in) 3.196 3.107 2.873 2.527 2.109 1.684	Y(in) 0.000 0.531 1.013 1.414 1.715 1.945
θ(deg) 0 10 20 30 40 50	R(in) 3.204 3.136 2.995 2.825 2.643 2.481	X(in) 3.204 3.091 2.824 2.466 2.051 1.624	Y(in) 0.000 0.528 0.996 1.380 1.668 1.876	θ(deg) 0 10 20 30 40	R(in) 3.196 3.152 3.046 2.895 2.719	X(in) 3.196 3.107 2.873 2.527 2.109	Y(in) 0.000 0.531 1.013 1.414 1.715
θ(deg) 0 10 20 30 40 50 60	R(in) 3.204 3.136 2.995 2.825 2.643 2.481 2.362	X(in) 3.204 3.091 2.824 2.466 2.051 1.624 1.209 0.796	Y(in) 0.000 0.528 0.996 1.380 1.668 1.876 2.029 2.120	θ(deg) 0 10 20 30 40 50 60	R(in) 3.196 3.152 3.046 2.895 2.719 2.573 2.466 2.391	X(in) 3.196 3.107 2.873 2.527 2.109 1.684 1.262 0.841	Y(in) 0.000 0.531 1.013 1.414 1.715 1.945 2.118 2.238
θ(deg) 0 10 20 30 40 50 60 70	R(in) 3.204 3.136 2.995 2.825 2.643 2.481 2.362 2.265	X(in) 3.204 3.091 2.824 2.466 2.051 1.624 1.209	Y(in) 0.000 0.528 0.996 1.380 1.668 1.876 2.029	θ(deg) 0 10 20 30 40 50 60 70	R(in) 3.196 3.152 3.046 2.895 2.719 2.573 2.466 2.391 2.320	X(in) 3.196 3.107 2.873 2.527 2.109 1.684 1.262	Y(in) 0.000 0.531 1.013 1.414 1.715 1.945 2.118 2.238 2.283
θ(deg) 0 10 20 30 40 50 60 70 80	R(in) 3.204 3.136 2.995 2.825 2.643 2.481 2.362 2.265	X(in) 3.204 3.091 2.824 2.466 2.051 1.624 1.209 0.796	Y(in) 0.000 0.528 0.996 1.380 1.668 1.876 2.029 2.120	θ(deg) 0 10 20 30 40 50 60 70 80 90	R(in) 3.196 3.152 3.046 2.895 2.719 2.573 2.466 2.391 2.320 2.237	X(in) 3.196 3.107 2.873 2.527 2.109 1.684 1.262 0.841 0.415 0.000	Y(in) 0.000 0.531 1.013 1.414 1.715 1.945 2.118 2.238 2.237
θ(deg) 0 10 20 30 40 50 60 70 80 90	R(in) 3.204 3.136 2.995 2.825 2.643 2.481 2.362 2.265	X(in) 3.204 3.091 2.824 2.466 2.051 1.624 1.209 0.796	Y(in) 0.000 0.528 0.996 1.380 1.668 1.876 2.029 2.120	θ(deg) 0 10 20 30 40 50 60 70 80	R(in) 3.196 3.152 3.046 2.895 2.719 2.573 2.466 2.391 2.320 2.237 2.297	X(in) 3.196 3.107 2.873 2.527 2.109 1.684 1.262 0.841 0.415 0.000 -0.411	Y(in) 0.000 0.531 1.013 1.414 1.715 1.945 2.118 2.238 2.238 2.237 2.260
θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 3.204 3.136 2.995 2.825 2.643 2.481 2.362 2.265	X(in) 3.204 3.091 2.824 2.466 2.051 1.624 1.209 0.796	Y(in) 0.000 0.528 0.996 1.380 1.668 1.876 2.029 2.120	θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 3.196 3.152 3.046 2.895 2.719 2.573 2.466 2.391 2.320 2.237	X(in) 3.196 3.107 2.873 2.527 2.109 1.684 1.262 0.841 0.415 0.000	Y(in) 0.000 0.531 1.013 1.414 1.715 1.945 2.118 2.238 2.238 2.237 2.260 2.229
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110	R(in) 3.204 3.136 2.995 2.825 2.643 2.481 2.362 2.265	X(in) 3.204 3.091 2.824 2.466 2.051 1.624 1.209 0.796	Y(in) 0.000 0.528 0.996 1.380 1.668 1.876 2.029 2.120	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110	R(in) 3.196 3.152 3.046 2.895 2.719 2.573 2.466 2.391 2.320 2.237 2.297 2.381	X(in) 3.196 3.107 2.873 2.527 2.109 1.684 1.262 0.841 0.415 0.000 -0.411 -0.837	Y(in) 0.000 0.531 1.013 1.414 1.715 1.945 2.118 2.238 2.283 2.283 2.283 2.283 2.283 2.283
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120	R(in) 3.204 3.136 2.995 2.825 2.643 2.481 2.362 2.265	X(in) 3.204 3.091 2.824 2.466 2.051 1.624 1.209 0.796	Y(in) 0.000 0.528 0.996 1.380 1.668 1.876 2.029 2.120	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120	R(in) 3.196 3.152 3.046 2.895 2.719 2.573 2.466 2.391 2.320 2.237 2.297 2.381 2.484	X(in) 3.196 3.107 2.873 2.527 2.109 1.684 1.262 0.841 0.415 0.000 -0.411 -0.837 -1.271	Y(in) 0.000 0.531 1.013 1.414 1.715 1.945 2.118 2.238 2.237 2.260 2.229 2.134 1.961
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 3.204 3.136 2.995 2.825 2.643 2.481 2.362 2.265	X(in) 3.204 3.091 2.824 2.466 2.051 1.624 1.209 0.796	Y(in) 0.000 0.528 0.996 1.380 1.668 1.876 2.029 2.120	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 3.196 3.152 3.046 2.895 2.719 2.573 2.466 2.391 2.320 2.237 2.297 2.381 2.484 2.594	X(in) 3.196 3.107 2.873 2.527 2.109 1.684 1.262 0.841 0.415 0.000 -0.411 -0.837 -1.271 -1.698	Y(in) 0.000 0.531 1.013 1.414 1.715 1.945 2.118 2.238 2.237 2.260 2.229 2.134 1.961 1.693
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 3.204 3.136 2.995 2.825 2.643 2.481 2.362 2.265	X(in) 3.204 3.091 2.824 2.466 2.051 1.624 1.209 0.796	Y(in) 0.000 0.528 0.996 1.380 1.668 1.876 2.029 2.120	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 3.196 3.152 3.046 2.895 2.719 2.573 2.466 2.391 2.320 2.237 2.297 2.381 2.484 2.594 2.683	X(in) 3.196 3.107 2.873 2.527 2.109 1.684 1.262 0.841 0.415 0.000 -0.411 -0.837 -1.271 -1.698 -2.082	Y(in) 0.000 0.531 1.013 1.414 1.715 1.945 2.118 2.238 2.237 2.260 2.229 2.134 1.961 1.693 1.333
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 3.204 3.136 2.995 2.825 2.643 2.481 2.362 2.265	X(in) 3.204 3.091 2.824 2.466 2.051 1.624 1.209 0.796	Y(in) 0.000 0.528 0.996 1.380 1.668 1.876 2.029 2.120	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 3.196 3.152 3.046 2.895 2.719 2.573 2.466 2.391 2.320 2.237 2.297 2.381 2.484 2.594 2.683 2.729	X(in) 3.196 3.107 2.873 2.527 2.109 1.684 1.262 0.841 0.415 0.000 -0.411 -0.837 -1.271 -1.698 -2.082 -2.382	Y(in) 0.000 0.531 1.013 1.414 1.715 1.945 2.118 2.238 2.237 2.260 2.229 2.134 1.961 1.693
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160	R(in) 3.204 3.136 2.995 2.825 2.643 2.481 2.362 2.265	X(in) 3.204 3.091 2.824 2.466 2.051 1.624 1.209 0.796	Y(in) 0.000 0.528 0.996 1.380 1.668 1.876 2.029 2.120	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160	R(in) 3.196 3.152 3.046 2.895 2.719 2.573 2.466 2.391 2.320 2.237 2.297 2.381 2.484 2.594 2.683 2.729 2.748	X(in) 3.196 3.107 2.873 2.527 2.109 1.684 1.262 0.841 0.415 0.000 -0.411 -0.837 -1.271 -1.698 -2.082 -2.382 -2.591	Y(in) 0.000 0.531 1.013 1.414 1.715 1.945 2.118 2.238 2.237 2.260 2.229 2.134 1.961 1.693 1.333 0.914

TABLE 2. SMALL HEADFORM SKULL - EXTERIOR DIMENSIONS (cont.)

LEVEL	0	z= 0.0	00 (in)	LEVEL	+1	Z= 1.0	00 (in)
		X(in)				X(in)	
0	3,200	3.200	0.000	0	3.335	3.335	0.000
10	3.169	3.123	0.534	10	3.292	3.245	0.555
20	3.074	2.898	1.022	20	3.236	3.052	1.077
30	2.914	2.543	1.423	30	3.068	2.678	1.498
40	2.753	2.136	1.737	40	2.897	2.248	1.828
50	2.613	1.711	1.976	50	2.735	1.791	2.068
60	2.511	1.285	2.157	60	2.628	1.345	2.257
70	2.445	0.860	2.289	70	2.559	0.900	2.395
80	2.385	0.427	2.347	80	2.519	0.451	2.478
90	2.324	0.000	2.324	90	2.501	0.000	
100	2.384	-0.427	2.346	100	2.562	-0.459	2.521
110	2.474	-0.870	2.316	110	2.665	-0.937	2.494
120	2.588	-1.325	2.223	120	2.804	-1.435	2.409
130	2.711	-1.775	2.050	130	2.961	-1.939	
140	2.815	-2.184	1.776	140	3.098	-2.404	1.954
150	2.873	-2.507	1.403	150	3.181	-2.776	1.553
160	2.901	-2.736	0.965	160	3.227	-3.044	
170	2.914	-2.872	0.491	170	3.254	-3.207	0.548
180	2.920	-2.920	0.000	180	3.265	-3.265	0.000
LEVEL	+2	Z= 2.00	00 (in)	LEVEL	+3	Z= 3.0	00 (in)
		Z= 2.00 X(in)				Z= 3.0 X(in)	
θ(deg) 0	R(in) 3.261	X(in) 3.261	Y(in) 0.000	θ(deg) 0	R(in) 2.828	X(in) 2.828	Y(in) 0.000
θ(deg) 0 10	R(in) 3.261 3.272	X(in) 3.261 3.225	Y(in) 0.000 0.551	θ(deg) 0 10	R(in) 2.828 2.847	X(in) 2.828 2.806	Y(in) 0.000 0.479
θ(deg) 0 10 20	R(in) 3.261 3.272 3.235	X(in) 3.261 3.225 3.051	Y(in) 0.000 0.551 1.076	θ(deg) 0 10 20	R(in) 2.828 2.847 2.836	X(in) 2.828 2.806 2.675	Y(in) 0.000 0.479 0.943
θ(deg) 0 10 20 30	R(in) 3.261 3.272 3.235 3.095	X(in) 3.261 3.225 3.051 2.701	Y(in) 0.000 0.551 1.076 1.511	θ(deg) 0 10 20 30	R(in) 2.828 2.847 2.836 2.753	X(in) 2.828 2.806 2.675 2.403	Y(in) 0.000 0.479 0.943 1.344
θ(deg) 0 10 20 30 40	R(in) 3.261 3.272 3.235 3.095 2.898	X(in) 3.261 3.225 3.051 2.701 2.249	Y(in) 0.000 0.551 1.076 1.511 1.828	θ(deg) 0 10 20 30 40	R(in) 2.828 2.847 2.836 2.753 2.620	X(in) 2.828 2.806 2.675 2.403 2.033	Y(in) 0.000 0.479 0.943 1.344 1.653
θ(deg) 0 10 20 30 40 50	R(in) 3.261 3.272 3.235 3.095 2.898 2.734	X(in) 3.261 3.225 3.051 2.701 2.249 1.790	Y(in) 0.000 0.551 1.076 1.511 1.828 2.067	θ(deg) 0 10 20 30 40 50	R(in) 2.828 2.847 2.836 2.753 2.620 2.498	X(in) 2.828 2.806 2.675 2.403 2.033 1.635	Y(in) 0.000 0.479 0.943 1.344 1.653 1.888
θ(deg) 0 10 20 30 40 50 60	R(in) 3.261 3.272 3.235 3.095 2.898 2.734 2.625	X(in) 3.261 3.225 3.051 2.701 2.249 1.790 1.344	Y(in) 0.000 0.551 1.076 1.511 1.828 2.067 2.255	θ(deg) 0 10 20 30 40 50 60	R(in) 2.828 2.847 2.836 2.753 2.620 2.498 2.425	X(in) 2.828 2.806 2.675 2.403 2.033 1.635 1.241	Y(in) 0.000 0.479 0.943 1.344 1.653 1.888 2.083
θ(deg) 0 10 20 30 40 50 60 70	R(in) 3.261 3.272 3.235 3.095 2.898 2.734 2.625 2.556	X(in) 3.261 3.225 3.051 2.701 2.249 1.790 1.344 0.899	Y(in) 0.000 0.551 1.076 1.511 1.828 2.067 2.255 2.393	θ(deg) 0 10 20 30 40 50 60 70	R(in) 2.828 2.847 2.836 2.753 2.620 2.498 2.425 2.383	X(in) 2.828 2.806 2.675 2.403 2.033 1.635 1.241 0.838	Y(in) 0.000 0.479 0.943 1.344 1.653 1.888 2.083 2.230
θ(deg) 0 10 20 30 40 50 60 70 80	R(in) 3.261 3.272 3.235 3.095 2.898 2.734 2.625 2.556 2.515	X(in) 3.261 3.225 3.051 2.701 2.249 1.790 1.344 0.899 0.450	Y(in) 0.000 0.551 1.076 1.511 1.828 2.067 2.255 2.393 2.474	θ(deg) 0 10 20 30 40 50 60 70 80	R(in) 2.828 2.847 2.836 2.753 2.620 2.498 2.425 2.383 2.360	X(in) 2.828 2.806 2.675 2.403 2.033 1.635 1.241 0.838 0.422	Y(in) 0.000 0.479 0.943 1.344 1.653 1.888 2.083 2.230 2.322
θ(deg) 0 10 20 30 40 50 60 70 80 90	R(in) 3.261 3.272 3.235 3.095 2.898 2.734 2.625 2.556 2.515 2.500	X(in) 3.261 3.225 3.051 2.701 2.249 1.790 1.344 0.899 0.450 0.000	Y(in) 0.000 0.551 1.076 1.511 1.828 2.067 2.255 2.393 2.474 2.500	θ(deg) 0 10 20 30 40 50 60 70 80 90	R(in) 2.828 2.847 2.836 2.753 2.620 2.498 2.425 2.383 2.360 2.353	X(in) 2.828 2.806 2.675 2.403 2.033 1.635 1.241 0.838 0.422 0.000	Y(in) 0.000 0.479 0.943 1.344 1.653 1.888 2.083 2.230 2.322 2.353
θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 3.261 3.272 3.235 3.095 2.898 2.734 2.625 2.556 2.556 2.515 2.500 2.559	X(in) 3.261 3.225 3.051 2.701 2.249 1.790 1.344 0.899 0.450 0.000 -0.458	Y(in) 0.000 0.551 1.076 1.511 1.828 2.067 2.255 2.393 2.474 2.500 2.518	θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 2.828 2.847 2.836 2.753 2.620 2.498 2.425 2.383 2.360 2.353 2.410	X(in) 2.828 2.806 2.675 2.403 2.033 1.635 1.241 0.838 0.422 0.000 -0.431	Y(in) 0.000 0.479 0.943 1.344 1.653 1.888 2.083 2.230 2.322 2.353 2.371
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110	R(in) 3.261 3.272 3.235 3.095 2.898 2.734 2.625 2.556 2.556 2.515 2.500 2.559 2.662	X(in) 3.261 3.225 3.051 2.701 2.249 1.790 1.344 0.899 0.450 0.000 -0.458 -0.936	Y(in) 0.000 0.551 1.076 1.511 1.828 2.067 2.255 2.393 2.474 2.500 2.518 2.492	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110	R(in) 2.828 2.847 2.836 2.753 2.620 2.498 2.425 2.383 2.360 2.353 2.410 2.495	X(in) 2.828 2.806 2.675 2.403 2.033 1.635 1.241 0.838 0.422 0.000 -0.431 -0.877	Y(in) 0.000 0.479 0.943 1.344 1.653 1.888 2.083 2.230 2.322 2.353 2.371 2.336
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120	R(in) 3.261 3.272 3.235 3.095 2.898 2.734 2.625 2.556 2.515 2.500 2.559 2.662 2.800	X(in) 3.261 3.225 3.051 2.701 2.249 1.790 1.344 0.899 0.450 0.000 -0.458 -0.936 -1.433	Y(in) 0.000 0.551 1.076 1.511 1.828 2.067 2.255 2.393 2.474 2.500 2.518 2.492 2.405	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120	R(in) 2.828 2.847 2.836 2.753 2.620 2.498 2.425 2.383 2.360 2.353 2.410 2.495 2.600	X(in) 2.828 2.806 2.675 2.403 2.033 1.635 1.241 0.838 0.422 0.000 -0.431 -0.877 -1.331	Y(in) 0.000 0.479 0.943 1.344 1.653 1.888 2.083 2.230 2.322 2.353 2.371 2.336 2.234
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 3.261 3.272 3.235 3.095 2.898 2.734 2.625 2.556 2.556 2.555 2.500 2.559 2.662 2.800 2.951	X(in) 3.261 3.225 3.051 2.701 2.249 1.790 1.344 0.899 0.450 0.000 -0.458 -0.936 -1.433 -1.931	Y(in) 0.000 0.551 1.076 1.511 1.828 2.067 2.255 2.393 2.474 2.500 2.518 2.492 2.405 2.231	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 2.828 2.847 2.836 2.753 2.620 2.498 2.425 2.383 2.360 2.353 2.410 2.495 2.600 2.704	X(in) 2.828 2.806 2.675 2.403 2.033 1.635 1.241 0.838 0.422 0.000 -0.431 -0.877 -1.331 -1.770	Y(in) 0.000 0.479 0.943 1.344 1.653 1.888 2.083 2.230 2.322 2.353 2.371 2.336 2.234 2.044
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 3.261 3.272 3.235 3.095 2.898 2.734 2.625 2.556 2.556 2.555 2.500 2.559 2.662 2.800 2.951 3.078	X(in) 3.261 3.225 3.051 2.701 2.249 1.790 1.344 0.899 0.450 0.000 -0.458 -0.936 -1.433 -1.931 -2.388	Y(in) 0.000 0.551 1.076 1.511 1.828 2.067 2.255 2.393 2.474 2.500 2.518 2.492 2.405 2.231 1.942	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 2.828 2.847 2.836 2.753 2.620 2.498 2.425 2.383 2.360 2.353 2.410 2.495 2.600 2.704 2.784	X(in) 2.828 2.806 2.675 2.403 2.033 1.635 1.241 0.838 0.422 0.000 -0.431 -0.877 -1.331 -1.770 -2.160	Y(in) 0.000 0.479 0.943 1.344 1.653 1.888 2.083 2.230 2.322 2.353 2.371 2.336 2.234 2.044 1.756
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 3.261 3.272 3.235 3.095 2.898 2.734 2.625 2.556 2.556 2.559 2.662 2.800 2.951 3.078 3.159	X(in) 3.261 3.225 3.051 2.701 2.249 1.790 1.344 0.899 0.450 0.000 -0.458 -0.936 -1.433 -1.931 -2.388 -2.757	Y(in) 0.000 0.551 1.076 1.511 1.828 2.067 2.255 2.393 2.474 2.500 2.518 2.492 2.405 2.231 1.942 1.543	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 2.828 2.847 2.836 2.753 2.620 2.498 2.425 2.383 2.360 2.353 2.410 2.495 2.600 2.704 2.784 2.825	X(in) 2.828 2.806 2.675 2.403 2.033 1.635 1.241 0.838 0.422 0.000 -0.431 -0.877 -1.331 -1.770 -2.160 -2.466	Y(in) 0.000 0.479 0.943 1.344 1.653 1.888 2.083 2.230 2.322 2.353 2.371 2.336 2.234 2.044 1.756 1.380
θ(deg) 0 10 20 30 40 50 60 70 80 90 110 120 130 140 150 160	R(in) 3.261 3.272 3.235 3.095 2.898 2.734 2.625 2.556 2.515 2.500 2.559 2.662 2.800 2.951 3.078 3.159 3.206	X(in) 3.261 3.225 3.051 2.701 2.249 1.790 1.344 0.899 0.450 0.000 -0.458 -0.936 -1.433 -1.931 -2.388 -2.757 -3.023	Y(in) 0.000 0.551 1.076 1.511 1.828 2.067 2.255 2.393 2.474 2.500 2.518 2.492 2.405 2.231 1.942 1.543 1.066	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160	R(in) 2.828 2.847 2.836 2.753 2.620 2.498 2.425 2.383 2.360 2.353 2.410 2.495 2.600 2.704 2.784 2.825 2.841	X(in) 2.828 2.806 2.675 2.403 2.033 1.635 1.241 0.838 0.422 0.000 -0.431 -0.877 -1.331 -1.770 -2.160 -2.466 -2.679	Y(in) 0.000 0.479 0.943 1.344 1.653 1.888 2.083 2.230 2.322 2.353 2.371 2.336 2.234 2.044 1.756 1.380 0.945
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 3.261 3.272 3.235 3.095 2.898 2.734 2.625 2.556 2.556 2.559 2.662 2.800 2.951 3.078 3.159	X(in) 3.261 3.225 3.051 2.701 2.249 1.790 1.344 0.899 0.450 0.000 -0.458 -0.936 -1.433 -1.931 -2.388 -2.757	Y(in) 0.000 0.551 1.076 1.511 1.828 2.067 2.255 2.393 2.474 2.500 2.518 2.492 2.405 2.231 1.942 1.543	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 2.828 2.847 2.836 2.753 2.620 2.498 2.425 2.383 2.360 2.353 2.410 2.495 2.600 2.704 2.784 2.825	X(in) 2.828 2.806 2.675 2.403 2.033 1.635 1.241 0.838 0.422 0.000 -0.431 -0.877 -1.331 -1.770 -2.160 -2.466	Y(in) 0.000 0.479 0.943 1.344 1.653 1.888 2.083 2.230 2.322 2.353 2.371 2.336 2.234 2.044 1.756 1.380

TABLE 2. SMALL HEADFORM SKULL - EXTERIOR DIMENSIONS (cont.)

LEVEL	+4	z = 4.00	0 (in)
θ (deg)	R(in)	X(in)	Y(in)
0	1.466	1.466	0.000
10	1.502	1.481	0.253
20	1.543	1.455	0.513
30	1.536	1.340	0.750
40	1.498	1.163	0.945
50	1.477	0.967	1.117
60	1.491	0.763	1.281
70	1.512	0.532	1.416
80	1.529	0.274	1.504
90	1.537	0.000	1.537
100	1.584	-0.284	1.558
110	1.646	-0.579	1.541
120	1.719	-0.880	1.477
130	1.787	-1.170	1.351
140	1.833	-1.422	1.156
150	1.844	-1.609	0.900
160	1.839	-1.734	0.612
170	1.833	-1.807	0.309
180	1.832	-1.832	0.000

Notes:

- 1. Apex is located at (-0.160, 0.000, 4.392) for (X,Y,Z) or (0.160, 180, 4.392) for (R,θ,Z) .
- 2. Headform is symmetrical about the mid-sagittal plane.

TABLE 3. MEDIUM HEADFORM SKIN - EXTERIOR DIMENSIONS

LEVEL	- 5	Z = -4.85	50 (in)	LEVEL	-4	Z = -4.0	00 (in)
θ (deg)	R(in)	X(in)	Y(in)	θ (deg)	R(in)	X(in)	Y(in)
0 10 20 30 40 50 60 70 80 90 100	1.792 1.798 1.818 1.852 1.897 1.956 2.026 2.109 2.200 2.298 2.400	1.792 1.770 1.708 1.603 1.453 1.257 1.013 0.721 0.382 0.000 -0.417	0.000 0.312 0.622 0.926 1.219 1.499 1.755 1.981 2.167 2.298 2.364	0 10 20 30 40 50 60 70 80 90	2.095 2.071 1.986 1.887 1.873 1.934 2.005 2.081 2.161 2.259 2.356	2.095 2.040 1.866 1.635 1.435 1.243 1.003 0.712 0.375 0.000 -0.409	0.000 0.360 0.679 0.944 1.204 1.481 1.737 1.956 2.129 2.259 2.320
110 120 130 140 150 160 170 180		-0.856 -1.303 -1.735 -2.132 -2.470 -2.729 -2.892 -2.948 Z= -3.00	2.353 2.256 2.067 1.789 1.426 0.993 0.510 0.000	110 120 130 140 150 160 170 180	2.458 2.561 2.659 2.744 2.808 2.852 2.877 2.887	-0.841 -1.280 -1.709 -2.102 -2.431 -2.680 -2.833 -2.887 Z= -2.00	2.310 2.218 2.037 1.764 1.404 0.975 0.500 0.000
	R(in)	X(in)	Y(in)	θ (dea)	R(in)		Y(in)
0 10 20	R(in) 3.700 3.534 3.302	X(in) 3.700 3.481 3.102	Y(in) 0.000 0.614 1.129	θ(deg) 0 10 20	R(in) 4.091 3.856 3.490	X(in) 4.091 3.798 3.279	Y(in) 0.000 0.670 1.194

TABLE 3. MEDIUM HEADFORM SKIN - EXTERIOR DIMENSIONS (cont.)

		z = -1.0	• •		0	Z = 0.00	
θ(deg)	R(in)	X(in)	Y(in)	θ(deg)	R(in)	X(in)	Y(in)
0 10 20 30 40	4.685 3.808 3.690 3.479 3.297	4.685 3.751 3.467 3.013 2.525	0.000 0.661 1.262 1.740 2.119	0 10 20 30 40	4.286 3.618 3.517 3.431 3.344	4.286 3.564 3.305 2.971 2.562	0.000 0.628 1.203 1.716 2.149
50 60 70 80 90 100 110	3.129 2.971 2.832 2.725 2.567 2.751 2.883 2.822	2.011 1.486 0.968 0.473 0.000 -0.478 -0.986 -1.411	2.397 2.573 2.661 2.683 2.567 2.709 2.709 2.444	50 60 70 80 90 100 110 120	3.261 3.168 3.060 2.948 2.850 2.995 3.138 3.149	2.096 1.584 1.047 0.512 0.000 -0.520 -1.073 -1.575	2.498 2.743 2.875 2.904 2.850 2.949 2.949 2.727
130 140 150 160 170 180	2.916 2.985 3.008 3.003 2.993 2.990	-1.875 -2.286 -2.605 -2.822 -2.948 -2.990 Z= 1.0	2.234 1.918 1.504 1.027 0.520 0.000	130 140 150 160 170 180	3.282 3.389 3.441 3.460 3.466 3.470	-2.109 -2.596 -2.980 -3.251 -3.413 -3.470 Z= 2.00	2.514 2.178 1.721 1.183 0.602 0.000
		X(in)				X(in)	Y(in)
0 10 20 30 40 50	3.929 3.768 3.562 3.672 3.563 3.383 3.272	3.929 3.711 3.347 3.180 2.729 2.175 1.636	0.000 0.654 1.218 1.836 2.290 2.592	0 10 20 30 40 50	3.931 3.949 3.911 3.741 3.509 3.328	3.931 3.889 3.675 3.240 2.688 2.139 1.605	0.000 0.686 1.338 1.871 2.256 2.549 2.780

TABLE 3. MEDIUM HEADFORM SKIN - EXTERIOR DIMENSIONS (cont.)

LEVEL	+3	Z= 3.0	00 (in)	LEVEL	+4	Z= 4.00	00 (in)
θ (deg)	R(in)	X(in)	Y(in)	θ (deg)	R(in)	X(in)	Y(in)
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170	3.671 3.690 3.669 3.552 3.371 3.208 3.109 3.051 3.018 3.007 3.076 3.185 3.319 3.455 3.561 3.617 3.641 3.653	3.671 3.634 3.448 3.077 2.582 2.062 1.554 1.043 0.524 0.000 -0.534 -1.089 -1.660 -2.221 -2.728 -3.132 -3.421 -3.598	0.000 0.641 1.255 1.776 2.167 2.458 2.692 2.867 2.972 3.007 3.030 2.993 2.875 2.647 2.289 1.808 1.245 0.634	0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170	2.889 2.924 2.946 2.895 2.795 2.708 2.670 2.658 2.655 2.718 2.898 2.898 2.984 3.039 3.051 3.037 3.021	2.889 2.880 2.768 2.507 2.141 1.741 1.335 0.909 0.461 0.000 -0.472 -0.958 -1.449 -1.918 -2.328 -2.642 -2.854 -2.976	0.000 0.508 1.008 1.448 1.796 2.075 2.312 2.497 2.614 2.655 2.677 2.633 2.510 2.286 1.953 1.525 1.039 0.525
180	3.659	-3.596 -3.659	0.000	180	3.021	-2.976 -3.018	0.000
LEVEL θ (deg)		Z= 5.00 X(in)					
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180	0.854 0.889 0.940 0.960 0.956 0.969 1.017 1.076 1.125 1.147 1.197 1.265 1.345 1.422 1.475 1.495 1.497 1.500 1.504	0.854 0.876 0.884 0.831 0.732 0.623 0.509 0.368 0.195 0.000 -0.208 -0.433 -0.672 -0.914 -1.130 -1.294 -1.407 -1.477 -1.504	0.000 0.154 0.322 0.480 0.614 0.742 0.881 1.012 1.108 1.147 1.179 1.189 1.164 1.090 0.948 0.747 0.512 0.261 0.000				

TABLE 3. MEDIUM HEADFORM SKIN - EXTERIOR DIMENSIONS (cont.)

- 1. Apex is located at (-0.190, 0.000, 5.150) for (X,Y,Z) or (0.190, 180, 5.150) for (R, θ, Z) .
- 2. Headform is symmetrical about the mid-sagittal plane.

TABLE 4. MEDIUM HEADFORM SKULL - EXTERIOR DIMENSIONS

LEVEL	-4	z = -3.00	00 (in)	LEVEL ·	-3	z = -2.0	00 (in)
θ (deg)	R(in)	X(in)	Y(in)	heta (deg)	R(in)	X(in)	Y(in)
0	3.341	3.341	0.000	0	3.374	3.374	0.000
10	3.209	3.163	0.540	10	3.271	3.224	0.551
20	2.969	2.800	0.988	20	3.076	2.900	1.023
. 30	2.723	2.376	1.330	30	2.865	2.500	1.399
40	2.501	1.940	1.578	40	2.659	2.063	1.677
50	2.317	1.516	1.751	50	2.477	1.621	1.872
60	2.177	1.114	1.870	60	2.341	1.198	2.011
70				70	2.219	0.780	2.077
80				80			
90				90			
100				100			
110				110			
120				120			
130				130			
140				140			
150				150			
160				160			
170				170			
180				180			
LEVEL	-2	z = -1.00	00 (in)	LEVEL ·	-1	Z = -0.3	50 (in)
LEVEL		Z = -1.00	•	LEVEL .		Z = -0.3 $X(in)$	
LEVEL θ(deg)		Z= -1.00 X(in)	•			Z= -0.3 X(in)	
			•				
θ(deg)	R(in)	X(in)	Y(in)	θ(deg) 	R(in)	X(in)	Y(in)
θ(deg) 0	R(in) 3.379	X(in) 3.379	Y(in) 0.000	θ(deg) 0	R(in) 3.371	X(in) 3.371	Y(in) 0.000
θ(deg) 0 10	R(in) 3.379 3.310	X(in) 3.379 3.263	Y(in) 0.000 0.557	θ(deg) 0 10	R(in) 3.371 3.325	X(in) 3.371 3.278	Y(in) 0.000 0.560
θ(deg) 0 10 20	R(in) 3.379 3.310 3.165	X(in) 3.379 3.263 2.984	Y(in) 0.000 0.557 1.053	θ(deg) 0 10 20	R(in) 3.371 3.325 3.214	X(in) 3.371 3.278 3.031	Y(in) 0.000 0.560 1.069
θ(deg) 0 10 20 30	R(in) 3.379 3.310 3.165 2.988	X(in) 3.379 3.263 2.984 2.608	Y(in) 0.000 0.557 1.053 1.459	θ(deg) 0 10 20 30	R(in) 3.371 3.325 3.214 3.054	X(in) 3.371 3.278 3.031 2.665	Y(in) 0.000 0.560 1.069 1.491
θ(deg) 0 10 20 30 40	R(in) 3.379 3.310 3.165 2.988 2.797	X(in) 3.379 3.263 2.984 2.608 2.170	Y(in) 0.000 0.557 1.053 1.459 1.765	θ(deg) 0 10 20 30 40	R(in) 3.371 3.325 3.214 3.054 2.868	X(in) 3.371 3.278 3.031 2.665 2.225	Y(in) 0.000 0.560 1.069 1.491 1.809
θ(deg) 0 10 20 30 40 50	R(in) 3.379 3.310 3.165 2.988 2.797 2.628	X(in) 3.379 3.263 2.984 2.608 2.170 1.720	Y(in) 0.000 0.557 1.053 1.459 1.765 1.986	θ(deg) 0 10 20 30 40 50	R(in) 3.371 3.325 3.214 3.054 2.868 2.714	X(in) 3.371 3.278 3.031 2.665 2.225 1.776	Y(in) 0.000 0.560 1.069 1.491 1.809 2.052
θ (deg) 0 10 20 30 40 50 60	R(in) 3.379 3.310 3.165 2.988 2.797 2.628 2.504	X(in) 3.379 3.263 2.984 2.608 2.170 1.720 1.282	Y(in) 0.000 0.557 1.053 1.459 1.765 1.986 2.151	θ(deg) 0 10 20 30 40 50 60	R(in) 3.371 3.325 3.214 3.054 2.868 2.714 2.601	X(in) 3.371 3.278 3.031 2.665 2.225 1.776 1.331	Y(in) 0.000 0.560 1.069 1.491 1.809 2.052 2.234
θ(deg) 0 10 20 30 40 50 60 70	R(in) 3.379 3.310 3.165 2.988 2.797 2.628 2.504 2.403	X(in) 3.379 3.263 2.984 2.608 2.170 1.720 1.282 0.845	Y(in) 0.000 0.557 1.053 1.459 1.765 1.986 2.151 2.249	θ(deg) 0 10 20 30 40 50 60 70	R(in) 3.371 3.325 3.214 3.054 2.868 2.714 2.601 2.522	X(in) 3.371 3.278 3.031 2.665 2.225 1.776 1.331 0.887	Y(in) 0.000 0.560 1.069 1.491 1.809 2.052 2.234 2.361
θ (deg) 0 10 20 30 40 50 60 70 80	R(in) 3.379 3.310 3.165 2.988 2.797 2.628 2.504 2.403	X(in) 3.379 3.263 2.984 2.608 2.170 1.720 1.282 0.845	Y(in) 0.000 0.557 1.053 1.459 1.765 1.986 2.151 2.249	θ(deg) 0 10 20 30 40 50 60 70 80	R(in) 3.371 3.325 3.214 3.054 2.868 2.714 2.601 2.522 2.448	X(in) 3.371 3.278 3.031 2.665 2.225 1.776 1.331 0.887 0.438	Y(in) 0.000 0.560 1.069 1.491 1.809 2.052 2.234 2.361 2.408
θ (deg) 0 10 20 30 40 50 60 70 80 90	R(in) 3.379 3.310 3.165 2.988 2.797 2.628 2.504 2.403	X(in) 3.379 3.263 2.984 2.608 2.170 1.720 1.282 0.845	Y(in) 0.000 0.557 1.053 1.459 1.765 1.986 2.151 2.249	θ(deg) 0 10 20 30 40 50 60 70 80 90	R(in) 3.371 3.325 3.214 3.054 2.868 2.714 2.601 2.522 2.448 2.359	X(in) 3.371 3.278 3.031 2.665 2.225 1.776 1.331 0.887 0.438 0.000	Y(in) 0.000 0.560 1.069 1.491 1.809 2.052 2.234 2.361 2.408 2.359
θ (deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 3.379 3.310 3.165 2.988 2.797 2.628 2.504 2.403	X(in) 3.379 3.263 2.984 2.608 2.170 1.720 1.282 0.845	Y(in) 0.000 0.557 1.053 1.459 1.765 1.986 2.151 2.249	θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 3.371 3.325 3.214 3.054 2.868 2.714 2.601 2.522 2.448 2.359 2.423	X(in) 3.371 3.278 3.031 2.665 2.225 1.776 1.331 0.887 0.438 0.000 -0.434	Y(in) 0.000 0.560 1.069 1.491 1.809 2.052 2.234 2.361 2.408 2.359 2.384
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110	R(in) 3.379 3.310 3.165 2.988 2.797 2.628 2.504 2.403	X(in) 3.379 3.263 2.984 2.608 2.170 1.720 1.282 0.845	Y(in) 0.000 0.557 1.053 1.459 1.765 1.986 2.151 2.249	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110	R(in) 3.371 3.325 3.214 3.054 2.868 2.714 2.601 2.522 2.448 2.359 2.423 2.512	X(in) 3.371 3.278 3.031 2.665 2.225 1.776 1.331 0.887 0.438 0.000 -0.434 -0.883	Y(in) 0.000 0.560 1.069 1.491 1.809 2.052 2.234 2.361 2.408 2.359 2.384 2.351
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120	R(in) 3.379 3.310 3.165 2.988 2.797 2.628 2.504 2.403	X(in) 3.379 3.263 2.984 2.608 2.170 1.720 1.282 0.845	Y(in) 0.000 0.557 1.053 1.459 1.765 1.986 2.151 2.249	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120	R(in) 3.371 3.325 3.214 3.054 2.868 2.714 2.601 2.522 2.448 2.359 2.423 2.512 2.620	X(in) 3.371 3.278 3.031 2.665 2.225 1.776 1.331 0.887 0.438 0.000 -0.434 -0.883 -1.341	Y(in) 0.000 0.560 1.069 1.491 1.809 2.052 2.234 2.361 2.408 2.359 2.384 2.351 2.251
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 3.379 3.310 3.165 2.988 2.797 2.628 2.504 2.403	X(in) 3.379 3.263 2.984 2.608 2.170 1.720 1.282 0.845	Y(in) 0.000 0.557 1.053 1.459 1.765 1.986 2.151 2.249	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 3.371 3.325 3.214 3.054 2.868 2.714 2.601 2.522 2.448 2.359 2.423 2.512 2.620 2.736	X(in) 3.371 3.278 3.031 2.665 2.225 1.776 1.331 0.887 0.438 0.000 -0.434 -0.883 -1.341 -1.791	Y(in) 0.000 0.560 1.069 1.491 1.809 2.052 2.234 2.361 2.408 2.359 2.384 2.351 2.251 2.068
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 3.379 3.310 3.165 2.988 2.797 2.628 2.504 2.403	X(in) 3.379 3.263 2.984 2.608 2.170 1.720 1.282 0.845	Y(in) 0.000 0.557 1.053 1.459 1.765 1.986 2.151 2.249	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 3.371 3.325 3.214 3.054 2.868 2.714 2.601 2.522 2.448 2.359 2.423 2.512 2.620 2.736 2.830	X(in) 3.371 3.278 3.031 2.665 2.225 1.776 1.331 0.887 0.438 0.000 -0.434 -0.883 -1.341 -1.791 -2.196	Y(in) 0.000 0.560 1.069 1.491 1.809 2.052 2.234 2.361 2.408 2.359 2.384 2.351 2.068 1.786
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 3.379 3.310 3.165 2.988 2.797 2.628 2.504 2.403	X(in) 3.379 3.263 2.984 2.608 2.170 1.720 1.282 0.845	Y(in) 0.000 0.557 1.053 1.459 1.765 1.986 2.151 2.249	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 3.371 3.325 3.214 3.054 2.868 2.714 2.601 2.522 2.448 2.359 2.423 2.512 2.620 2.736 2.830 2.879 2.898 2.905	X(in) 3.371 3.278 3.031 2.665 2.225 1.776 1.331 0.887 0.438 0.000 -0.434 -0.883 -1.341 -1.791 -2.196 -2.513	Y(in) 0.000 0.560 1.069 1.491 1.809 2.052 2.234 2.361 2.408 2.359 2.384 2.351 2.251 2.068 1.786 1.406
θ(deg) 0 10 20 30 40 50 60 70 80 90 110 120 130 140 150 160	R(in) 3.379 3.310 3.165 2.988 2.797 2.628 2.504 2.403	X(in) 3.379 3.263 2.984 2.608 2.170 1.720 1.282 0.845	Y(in) 0.000 0.557 1.053 1.459 1.765 1.986 2.151 2.249	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160	R(in) 3.371 3.325 3.214 3.054 2.868 2.714 2.601 2.522 2.448 2.359 2.423 2.512 2.620 2.736 2.830 2.879 2.898	X(in) 3.371 3.278 3.031 2.665 2.225 1.776 1.331 0.887 0.438 0.000 -0.434 -0.883 -1.341 -1.791 -2.196 -2.513 -2.733	Y(in) 0.000 0.560 1.069 1.491 1.809 2.052 2.234 2.361 2.408 2.359 2.384 2.351 2.251 2.068 1.786 1.406 0.964

TABLE 4. MEDIUM HEADFORM SKULL - EXTERIOR DIMENSIONS (cont.)

LEVEL	0	z = 0.00	00 (in)	LEVEL	+1	z = 1.0	00 (in)
θ (deg)	R(in)	X(in)	Y(in)	θ (deg)	R(in)	X(in)	Y(in)
0		3.376	0.000	0	3.503		
10	3.343	3.295	0.563	10	3.449		
20	3.242	3.057	1.078	20	3.394	3.200	1.129
30	3.074	2.682	1.501	30	3.210	2.801	1.567
40	2.904	2.253	1.832	40	3.043		1.920
50	2.757	1.804	2.084	50	2.876		2.174
60	2.649	1.356	2.276	60	2.764	1.415	2.375
70	2.579	0.907	2.414	70	2.694		2.522
80	2.516	0.450	2.475	80		0.475	2.609
90	2.451	0.000	2.451	90	2.633	0.000	2.633
100	2.515	-0.450 -0.918	2.475	100	2.696	-0.483	2.653
110 120	2.610 2.730	-0.918	2.443 2.345	110 120	2.805 2.951	-0.986 -1.510	2.626
130	2.730	-1.872	2.343	130	3.115	-2.039	2.535 2.355
140	2.969	-2.304	1.873	140	3.258	-2.528	2.055
150	3.031	-2.645	1.480	150	3.345	-2.920	1.633
160	3.060	-2.886	1.018	160	3.394	-3.200	1.129
170	3.073	-3.029	0.518	170	3.421	-3.372	0.576
180	3.080	-3.080	0.000	180	3.433	-3.433	0.000
	_				_		
		Z= 2.00			+3		
		Z= 2.00 X(in)				Z= 3.00 X(in)	
θ(deg)	R(in)	X(in)	Y(in)	θ(deg)	R(in)	X(in)	Y(in)
	R(in) 3.466	X(in) 3.466	Y(in) 0.000	θ(deg) 0	R(in) 3.130	X(in) 3.130	Y(in) 0.000
θ(deg) 	R(in)	X(in)	Y(in)	θ(deg) 0 10	R(in) 3.130 3.146	X(in) 3.130 3.101	Y(in) 0.000 0.530
θ(deg) 0 10	R(in) 3.466 3.478	X(in) 3.466 3.428	Y(in) 0.000 0.586	θ(deg) 0	R(in) 3.130	X(in) 3.130	Y(in) 0.000
θ(deg) 0 10 20	R(in) 3.466 3.478 3.437	X(in) 3.466 3.428 3.241	Y(in) 0.000 0.586 1.143	θ(deg) 0 10 20	R(in) 3.130 3.146 3.126	X(in) 3.130 3.101 2.948	Y(in) 0.000 0.530 1.040
θ(deg) 0 10 20 30 40 50	R(in) 3.466 3.478 3.437 3.282 3.068 2.894	X(in) 3.466 3.428 3.241 2.864	Y(in) 0.000 0.586 1.143 1.602 1.936 2.187	θ(deg) 0 10 20 30	R(in) 3.130 3.146 3.126 3.025 2.867 2.723	X(in) 3.130 3.101 2.948 2.640 2.224 1.782	Y(in) 0.000 0.530 1.040 1.477
θ(deg) 0 10 20 30 40 50 60	R(in) 3.466 3.478 3.437 3.282 3.068 2.894 2.777	X(in) 3.466 3.428 3.241 2.864 2.380 1.894 1.421	Y(in) 0.000 0.586 1.143 1.602 1.936 2.187 2.386	θ(deg) 0 10 20 30 40 50 60	R(in) 3.130 3.146 3.126 3.025 2.867 2.723 2.633	X(in) 3.130 3.101 2.948 2.640 2.224 1.782 1.348	Y(in) 0.000 0.530 1.040 1.477 1.809
θ(deg) 0 10 20 30 40 50 60 70	R(in) 3.466 3.478 3.437 3.282 3.068 2.894 2.777 2.703	X(in) 3.466 3.428 3.241 2.864 2.380 1.894 1.421 0.950	Y(in) 0.000 0.586 1.143 1.602 1.936 2.187 2.386 2.530	θ(deg) 0 10 20 30 40 50 60 70	R(in) 3.130 3.146 3.126 3.025 2.867 2.723 2.633 2.579	X(in) 3.130 3.101 2.948 2.640 2.224 1.782 1.348 0.907	Y(in) 0.000 0.530 1.040 1.477 1.809 2.058 2.262 2.415
θ(deg) 0 10 20 30 40 50 60 70 80	R(in) 3.466 3.478 3.437 3.282 3.068 2.894 2.777 2.703 2.658	X(in) 3.466 3.428 3.241 2.864 2.380 1.894 1.421 0.950 0.476	Y(in) 0.000 0.586 1.143 1.602 1.936 2.187 2.386 2.530 2.615	θ(deg) 0 10 20 30 40 50 60 70 80	R(in) 3.130 3.146 3.126 3.025 2.867 2.723 2.633 2.579 2.550	X(in) 3.130 3.101 2.948 2.640 2.224 1.782 1.348 0.907 0.456	Y(in) 0.000 0.530 1.040 1.477 1.809 2.058 2.262 2.415 2.508
θ(deg) 0 10 20 30 40 50 60 70 80 90	R(in) 3.466 3.478 3.437 3.282 3.068 2.894 2.777 2.703 2.658 2.641	X(in) 3.466 3.428 3.241 2.864 2.380 1.894 1.421 0.950 0.476 0.000	Y(in) 0.000 0.586 1.143 1.602 1.936 2.187 2.386 2.530 2.615 2.641	θ(deg) 0 10 20 30 40 50 60 70 80 90	R(in) 3.130 3.146 3.126 3.025 2.867 2.723 2.633 2.579 2.550 2.540	X(in) 3.130 3.101 2.948 2.640 2.224 1.782 1.348 0.907 0.456 0.000	Y(in) 0.000 0.530 1.040 1.477 1.809 2.058 2.262 2.415 2.508 2.540
θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 3.466 3.478 3.437 3.282 3.068 2.894 2.777 2.703 2.658 2.641 2.704	X(in) 3.466 3.428 3.241 2.864 2.380 1.894 1.421 0.950 0.476 0.000 -0.484	Y(in) 0.000 0.586 1.143 1.602 1.936 2.187 2.386 2.530 2.615 2.641 2.660	θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 3.130 3.146 3.126 3.025 2.867 2.723 2.633 2.579 2.550 2.540 2.601	X(in) 3.130 3.101 2.948 2.640 2.224 1.782 1.348 0.907 0.456 0.000 -0.466	Y(in) 0.000 0.530 1.040 1.477 1.809 2.058 2.262 2.415 2.508 2.540 2.559
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110	R(in) 3.466 3.478 3.437 3.282 3.068 2.894 2.777 2.703 2.658 2.641 2.704 2.813	X(in) 3.466 3.428 3.241 2.864 2.380 1.894 1.421 0.950 0.476 0.000 -0.484 -0.989	Y(in) 0.000 0.586 1.143 1.602 1.936 2.187 2.386 2.530 2.615 2.641 2.660 2.634	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110	R(in) 3.130 3.146 3.126 3.025 2.867 2.723 2.633 2.579 2.550 2.540 2.601 2.697	X(in) 3.130 3.101 2.948 2.640 2.224 1.782 1.348 0.907 0.456 0.000 -0.466 -0.948	Y(in) 0.000 0.530 1.040 1.477 1.809 2.058 2.262 2.415 2.508 2.540 2.559 2.524
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120	R(in) 3.466 3.478 3.437 3.282 3.068 2.894 2.777 2.703 2.658 2.641 2.704 2.813 2.961	X(in) 3.466 3.428 3.241 2.864 2.380 1.894 1.421 0.950 0.476 0.000 -0.484 -0.989 -1.516	Y(in) 0.000 0.586 1.143 1.602 1.936 2.187 2.386 2.530 2.615 2.641 2.660 2.634 2.544	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120	R(in) 3.130 3.146 3.126 3.025 2.867 2.723 2.633 2.579 2.550 2.540 2.601 2.697 2.816	X(in) 3.130 3.101 2.948 2.640 2.224 1.782 1.348 0.907 0.456 0.000 -0.466 -0.948 -1.441	Y(in) 0.000 0.530 1.040 1.477 1.809 2.058 2.262 2.415 2.508 2.540 2.559 2.524 2.419
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 3.466 3.478 3.437 3.282 3.068 2.894 2.777 2.703 2.658 2.641 2.704 2.813 2.961 3.125	X(in) 3.466 3.428 3.241 2.864 2.380 1.894 1.421 0.950 0.476 0.000 -0.484 -0.989 -1.516 -2.045	Y(in) 0.000 0.586 1.143 1.602 1.936 2.187 2.386 2.530 2.615 2.641 2.660 2.634 2.544 2.362	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 3.130 3.146 3.126 3.025 2.867 2.723 2.633 2.579 2.550 2.540 2.601 2.697 2.816 2.937	X(in) 3.130 3.101 2.948 2.640 2.224 1.782 1.348 0.907 0.456 0.000 -0.466 -0.948 -1.441 -1.922	Y(in) 0.000 0.530 1.040 1.477 1.809 2.058 2.262 2.415 2.508 2.540 2.559 2.524 2.419 2.220
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 3.466 3.478 3.437 3.282 3.068 2.894 2.777 2.703 2.658 2.641 2.704 2.813 2.961 3.125 3.264	X(in) 3.466 3.428 3.241 2.864 2.380 1.894 1.421 0.950 0.476 0.000 -0.484 -0.989 -1.516 -2.045 -2.533	Y(in) 0.000 0.586 1.143 1.602 1.936 2.187 2.386 2.530 2.615 2.641 2.660 2.634 2.544 2.362 2.059	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 3.130 3.146 3.126 3.025 2.867 2.723 2.633 2.579 2.550 2.540 2.601 2.697 2.816 2.937 3.033	X(in) 3.130 3.101 2.948 2.640 2.224 1.782 1.348 0.907 0.456 0.000 -0.466 -0.948 -1.441 -1.922 -2.353	Y(in) 0.000 0.530 1.040 1.477 1.809 2.058 2.262 2.415 2.508 2.540 2.559 2.524 2.419 2.220 1.913
θ(deg) 0 10 20 30 40 50 60 70 80 90 110 120 130 140 150	R(in) 3.466 3.478 3.437 3.282 3.068 2.894 2.777 2.703 2.658 2.641 2.704 2.813 2.961 3.125 3.264 3.352	X(in) 3.466 3.428 3.241 2.864 2.380 1.894 1.421 0.950 0.476 0.000 -0.484 -0.989 -1.516 -2.045 -2.533 -2.926	Y(in) 0.000 0.586 1.143 1.602 1.936 2.187 2.386 2.530 2.615 2.641 2.660 2.634 2.544 2.362 2.059 1.637	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 3.130 3.146 3.126 3.025 2.867 2.723 2.633 2.579 2.550 2.540 2.601 2.697 2.816 2.937 3.033 3.087	X(in) 3.130 3.101 2.948 2.640 2.224 1.782 1.348 0.907 0.456 0.000 -0.466 -0.948 -1.441 -1.922 -2.353 -2.694	Y(in) 0.000 0.530 1.040 1.477 1.809 2.058 2.262 2.415 2.508 2.540 2.559 2.524 2.419 2.220 1.913 1.507
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160	R(in) 3.466 3.478 3.437 3.282 3.068 2.894 2.777 2.703 2.658 2.641 2.704 2.813 2.961 3.125 3.264 3.352 3.403	X(in) 3.466 3.428 3.241 2.864 2.380 1.894 1.421 0.950 0.476 0.000 -0.484 -0.989 -1.516 -2.045 -2.533 -2.926 -3.209	Y(in) 0.000 0.586 1.143 1.602 1.936 2.187 2.386 2.530 2.615 2.641 2.660 2.634 2.544 2.362 2.059 1.637 1.132	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160	R(in) 3.130 3.146 3.126 3.025 2.867 2.723 2.633 2.579 2.550 2.540 2.601 2.697 2.816 2.937 3.033 3.087 3.112	X(in) 3.130 3.101 2.948 2.640 2.224 1.782 1.348 0.907 0.456 0.000 -0.466 -0.948 -1.441 -1.922 -2.353 -2.694 -2.934	Y(in) 0.000 0.530 1.040 1.477 1.809 2.058 2.262 2.415 2.508 2.540 2.559 2.524 2.419 2.220 1.913 1.507 1.035
θ(deg) 0 10 20 30 40 50 60 70 80 90 110 120 130 140 150	R(in) 3.466 3.478 3.437 3.282 3.068 2.894 2.777 2.703 2.658 2.641 2.704 2.813 2.961 3.125 3.264 3.352	X(in) 3.466 3.428 3.241 2.864 2.380 1.894 1.421 0.950 0.476 0.000 -0.484 -0.989 -1.516 -2.045 -2.533 -2.926	Y(in) 0.000 0.586 1.143 1.602 1.936 2.187 2.386 2.530 2.615 2.641 2.660 2.634 2.544 2.362 2.059 1.637	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 3.130 3.146 3.126 3.025 2.867 2.723 2.633 2.579 2.550 2.540 2.601 2.697 2.816 2.937 3.033 3.087	X(in) 3.130 3.101 2.948 2.640 2.224 1.782 1.348 0.907 0.456 0.000 -0.466 -0.948 -1.441 -1.922 -2.353 -2.694	Y(in) 0.000 0.530 1.040 1.477 1.809 2.058 2.262 2.415 2.508 2.540 2.559 2.524 2.419 2.220 1.913 1.507

TABLE 4. MEDIUM HEADFORM SKULL - EXTERIOR DIMENSIONS (cont.)

LEVEL	+4	Z = 4.00	0 (in)
θ (deg)	R(in)	X(in)	Y(in)
0 10 20 30 40 50 60 70 80 90 100 110	2.094 2.130 2.162 2.132 2.064 2.011 1.997 1.997 2.002 2.005 2.058 2.129	2.094 2.100 2.038 1.861 1.601 1.316 1.022 0.702 0.358 0.000 -0.368 -0.749	1.041 1.302 1.520 1.716 1.870 1.969 2.005 2.025 1.993
120 130 140 150 160 170	2.212 2.288 2.340 2.354 2.346 2.336 2.334	-1.132 -1.498 -1.815 -2.054 -2.212 -2.302 -2.334	1.900 1.730 1.476 1.149 0.780 0.393 0.000

- 1. Apex is located at (-0.169,0.000,4.712) for (X,Y,Z) or (0.169,180,4.712) for (R, θ ,Z).
- 2. Headform is symmetrical about the mid-sagittal plane.

TABLE 5. LARGE HEADFORM SKIN - EXTERIOR DIMENSIONS

LEVEL	- 5	z = -5.03	20 (in)	LEVEL	-4	z = -4.0	00 (in)
θ (deg)	R(in)	X(in)	Y(in)	θ (deg)	R(in)	X(in)	Y(in)
0	1.874	1.874	0.000	0	3.710	3.710	0.000
10 20	1.880 1.901	1.852 1.787	0.326 0.648	10 20	3.542 3.175	3.489 2.985	0.613 1.083
30	1.935	1.677	0.046	30	2.476	2.146	1.235
40	1.982	1.520	1.272	40	2.006	1.539	1.287
50	2.043	1.315	1.563	50	2.024	1.303	1.549
60	2.115	1.060	1.830	60	2.097		1.814
70 80	2.200 2.295	0.754 0.400	2.067 2.260	70 80	2.173 2.251	0.745 0.392	2.041 2.216
90	2.293	0.400	2.200	90	2.352	0.000	2.352
100	2.504	-0.436	2.465	100	2.452	-0.427	2.415
110	2.612	-0.896	2.454	110	2.559	-0.877	2.404
120	2.719	-1.363	2.353	120	2.666	-1.336	2.307
130	2.818	-1.815	2.156	130	2.769	-1.783	2.119
140 150	2.908 2.981	-2.230 -2.584	1.866 1.487	140 150	2.859 2.924	-2.193 -2.534	1.834 1.459
160	3.037	-2.854	1.036	160	2.969	-2.791	1.013
170	3.071	-3.025	0.532	170	2.994	-2.949	
180	3.084	-3.084	0.000	180	3.004	-3.004	0.000
		z = -3.00			-2		
		Z= -3.00 X(in)				Z= -2.0 X(in)	
θ(deg) 0 10	R(in) 3.888 3.699	X(in) 3.888 3.643	Y(in) 0.000 0.641	θ(deg) 0 10	R(in) 4.301 4.027	X(in) 4.301 3.966	Y(in) 0.000 0.697
θ(deg) 0 10 20	R(in) 3.888 3.699 3.444	X(in) 3.888 3.643 3.237	Y(in) 0.000 0.641 1.175	θ(deg) 0 10 20	R(in) 4.301 4.027 3.656	X(in) 4.301 3.966 3.437	Y(in) 0.000 0.697 1.247
θ(deg) 0 10 20 30	R(in) 3.888 3.699 3.444 3.176	X(in) 3.888 3.643 3.237 2.752	Y(in) 0.000 0.641 1.175 1.584	θ(deg) 0 10 20 30	R(in) 4.301 4.027 3.656 3.333	X(in) 4.301 3.966 3.437 2.889	Y(in) 0.000 0.697 1.247 1.663
θ(deg) 0 10 20 30 40	R(in) 3.888 3.699 3.444 3.176 2.919	X(in) 3.888 3.643 3.237 2.752 2.239	Y(in) 0.000 0.641 1.175 1.584 1.873	θ(deg) 0 10 20 30 40	R(in) 4.301 4.027 3.656 3.333 3.102	X(in) 4.301 3.966 3.437 2.889 2.379	Y(in) 0.000 0.697 1.247 1.663 1.990
θ(deg) 0 10 20 30 40 50	R(in) 3.888 3.699 3.444 3.176 2.919 2.717	X(in) 3.888 3.643 3.237 2.752 2.239 1.749	Y(in) 0.000 0.641 1.175 1.584 1.873 2.079	θ(deg) 0 10 20 30 40 50	R(in) 4.301 4.027 3.656 3.333 3.102 2.931	X(in) 4.301 3.966 3.437 2.889 2.379 1.887	Y(in) 0.000 0.697 1.247 1.663 1.990 2.243
θ(deg) 0 10 20 30 40	R(in) 3.888 3.699 3.444 3.176 2.919 2.717 2.586 2.316	X(in) 3.888 3.643 3.237 2.752 2.239 1.749 1.296 0.794	Y(in) 0.000 0.641 1.175 1.584 1.873 2.079 2.238 2.176	θ(deg) 0 10 20 30 40	R(in) 4.301 4.027 3.656 3.333 3.102 2.931 2.807 2.720	X(in) 4.301 3.966 3.437 2.889 2.379 1.887 1.406 0.933	Y(in) 0.000 0.697 1.247 1.663 1.990 2.243 2.429 2.555
θ(deg) 0 10 20 30 40 50 60 70 80	R(in) 3.888 3.699 3.444 3.176 2.919 2.717 2.586 2.316 2.279	X(in) 3.888 3.643 3.237 2.752 2.239 1.749 1.296 0.794 0.397	Y(in) 0.000 0.641 1.175 1.584 1.873 2.079 2.238 2.176 2.245	θ(deg) 0 10 20 30 40 50 60 70 80	R(in) 4.301 4.027 3.656 3.333 3.102 2.931 2.807 2.720 2.659	X(in) 4.301 3.966 3.437 2.889 2.379 1.887 1.406 0.933 0.463	Y(in) 0.000 0.697 1.247 1.663 1.990 2.243 2.429 2.555 2.618
θ(deg) 0 10 20 30 40 50 60 70 80 90	R(in) 3.888 3.699 3.444 3.176 2.919 2.717 2.586 2.316 2.279 2.352	X(in) 3.888 3.643 3.237 2.752 2.239 1.749 1.296 0.794 0.397 0.000	Y(in) 0.000 0.641 1.175 1.584 1.873 2.079 2.238 2.176 2.245 2.352	θ(deg) 0 10 20 30 40 50 60 70 80 90	R(in) 4.301 4.027 3.656 3.333 3.102 2.931 2.807 2.720 2.659 2.462	X(in) 4.301 3.966 3.437 2.889 2.379 1.887 1.406 0.933 0.463 0.000	Y(in) 0.000 0.697 1.247 1.663 1.990 2.243 2.429 2.555 2.618 2.462
θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 3.888 3.699 3.444 3.176 2.919 2.717 2.586 2.316 2.279 2.352 2.451	X(in) 3.888 3.643 3.237 2.752 2.239 1.749 1.296 0.794 0.397 0.000 -0.427	Y(in) 0.000 0.641 1.175 1.584 1.873 2.079 2.238 2.176 2.245 2.352 2.414	θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 4.301 4.027 3.656 3.333 3.102 2.931 2.807 2.720 2.659 2.462 2.541	X(in) 4.301 3.966 3.437 2.889 2.379 1.887 1.406 0.933 0.463 0.000 -0.443	Y(in) 0.000 0.697 1.247 1.663 1.990 2.243 2.429 2.555 2.618 2.462 2.503
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110	R(in) 3.888 3.699 3.444 3.176 2.919 2.717 2.586 2.316 2.279 2.352 2.451 2.548	X(in) 3.888 3.643 3.237 2.752 2.239 1.749 1.296 0.794 0.397 0.000 -0.427 -0.874	Y(in) 0.000 0.641 1.175 1.584 1.873 2.079 2.238 2.176 2.245 2.352 2.414 2.394	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110	R(in) 4.301 4.027 3.656 3.333 3.102 2.931 2.807 2.720 2.659 2.462 2.541 2.630	X(in) 4.301 3.966 3.437 2.889 2.379 1.887 1.406 0.933 0.463 0.000 -0.443 -0.902	Y(in) 0.000 0.697 1.247 1.663 1.990 2.243 2.429 2.555 2.618 2.462 2.503 2.471
θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 3.888 3.699 3.444 3.176 2.919 2.717 2.586 2.316 2.279 2.352 2.451	X(in) 3.888 3.643 3.237 2.752 2.239 1.749 1.296 0.794 0.397 0.000 -0.427	Y(in) 0.000 0.641 1.175 1.584 1.873 2.079 2.238 2.176 2.245 2.352 2.414	θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 4.301 4.027 3.656 3.333 3.102 2.931 2.807 2.720 2.659 2.462 2.541	X(in) 4.301 3.966 3.437 2.889 2.379 1.887 1.406 0.933 0.463 0.000 -0.443	Y(in) 0.000 0.697 1.247 1.663 1.990 2.243 2.429 2.555 2.618 2.462 2.503
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 3.888 3.699 3.444 3.176 2.919 2.717 2.586 2.316 2.279 2.352 2.451 2.548 2.647 2.742 2.819	X(in) 3.888 3.643 3.237 2.752 2.239 1.749 1.296 0.794 0.397 0.000 -0.427 -0.874 -1.326 -1.765 -2.162	Y(in) 0.000 0.641 1.175 1.584 1.873 2.079 2.238 2.176 2.245 2.352 2.414 2.394 2.290 2.098 1.809	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 4.301 4.027 3.656 3.333 3.102 2.931 2.807 2.720 2.659 2.462 2.541 2.630 2.723 2.812 2.877	X(in) 4.301 3.966 3.437 2.889 2.379 1.887 1.406 0.933 0.463 0.000 -0.443 -0.902 -1.365 -1.811 -2.207	Y(in) 0.000 0.697 1.247 1.663 1.990 2.243 2.429 2.555 2.618 2.462 2.503 2.471 2.357 2.152 1.846
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 3.888 3.699 3.444 3.176 2.919 2.717 2.586 2.316 2.279 2.352 2.451 2.548 2.647 2.742 2.819 2.864	X(in) 3.888 3.643 3.237 2.752 2.239 1.749 1.296 0.794 0.397 0.000 -0.427 -0.874 -1.326 -1.765 -2.162 -2.482	Y(in) 0.000 0.641 1.175 1.584 1.873 2.079 2.238 2.176 2.245 2.352 2.414 2.394 2.290 2.098 1.809 1.429	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 4.301 4.027 3.656 3.333 3.102 2.931 2.807 2.720 2.659 2.462 2.541 2.630 2.723 2.812 2.877 2.904	X(in) 4.301 3.966 3.437 2.889 2.379 1.887 1.406 0.933 0.463 0.000 -0.443 -0.902 -1.365 -1.811 -2.207 -2.516	Y(in) 0.000 0.697 1.247 1.663 1.990 2.243 2.429 2.555 2.618 2.462 2.503 2.471 2.357 2.152 1.846 1.449
θ(deg) 0 10 20 30 40 50 60 70 80 90 110 120 130 140 150 160	R(in) 3.888 3.699 3.444 3.176 2.919 2.717 2.586 2.316 2.279 2.352 2.451 2.548 2.647 2.742 2.819 2.864 2.887	X(in) 3.888 3.643 3.237 2.752 2.239 1.749 1.296 0.794 0.397 0.000 -0.427 -0.874 -1.326 -1.765 -2.162 -2.482 -2.714	Y(in) 0.000 0.641 1.175 1.584 1.873 2.079 2.238 2.176 2.245 2.352 2.414 2.394 2.290 2.098 1.809 1.429 0.985	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160	R(in) 4.301 4.027 3.656 3.333 3.102 2.931 2.807 2.720 2.659 2.462 2.541 2.630 2.723 2.812 2.877 2.904 2.905	X(in) 4.301 3.966 3.437 2.889 2.379 1.887 1.406 0.933 0.463 0.000 -0.443 -0.902 -1.365 -1.811 -2.207 -2.516 -2.730	Y(in) 0.000 0.697 1.247 1.663 1.990 2.243 2.429 2.555 2.618 2.462 2.503 2.471 2.357 2.152 1.846 1.449 0.991
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 3.888 3.699 3.444 3.176 2.919 2.717 2.586 2.316 2.279 2.352 2.451 2.548 2.647 2.742 2.819 2.864	X(in) 3.888 3.643 3.237 2.752 2.239 1.749 1.296 0.794 0.397 0.000 -0.427 -0.874 -1.326 -1.765 -2.162 -2.482	Y(in) 0.000 0.641 1.175 1.584 1.873 2.079 2.238 2.176 2.245 2.352 2.414 2.394 2.290 2.098 1.809 1.429	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 4.301 4.027 3.656 3.333 3.102 2.931 2.807 2.720 2.659 2.462 2.541 2.630 2.723 2.812 2.877 2.904	X(in) 4.301 3.966 3.437 2.889 2.379 1.887 1.406 0.933 0.463 0.000 -0.443 -0.902 -1.365 -1.811 -2.207 -2.516	Y(in) 0.000 0.697 1.247 1.663 1.990 2.243 2.429 2.555 2.618 2.462 2.503 2.471 2.357 2.152 1.846 1.449

TABLE 5. LARGE HEADFORM SKIN - EXTERIOR DIMENSIONS (cont.)

LEVEL		Z = -1.0			0		
# (deg)	K(1n)	X(in)	Y(in)	θ(deg)	R(in)	X(in)	Y(in)
0 10	4.936 3.986	4.936	0.000	0	4.483 3.785	4.483 3.727	0.000 0.655
20	3.865	3.633	1.319	20	3.678	3.457	1.255
30	3.646	3.160	1.819	30	3.586	3.108	1.789
40	3.456	2.650	2.217	40	3.494	2.679	2.242
50	3.279	2.111	2.509	50	3.405	2.193	2.606
60 70	3.111 2.963	1.559 1.016	2.693	60	3.306	1.657	2.861
80	2.849	0.496	2.783 2.805	70 80	3.193 3.075	1.095 0.536	2.999
90	2.687	0.000	2.687	90	2.973	0.000	3.028 2.973
100	2.878	-0.501	2.834	100	3.124	-0.544	3.076
110	3.017	-1.034	2.834	110	3.274	-1.123	3.076
120	2.956	-1.481	2.558	120	3.287	-1.647	2.844
130	3.057	-1.968	2.339	130	3.427	-2.206	2.622
140	3.131	-2.401	2.009	140	3.540	-2.715	2.272
150 160	3.157 3.154	-2.736 -2.965	1.575 1.076	150	3.597	-3.117	1.795
170	3.145	-3.097	0.545	160 170	3.618 3.625	-3.401 -3.570	1.234 0.628
180	3.142	-3.142	0.000	180	3.630	-3.630	0.020
LEVEL			00 (in)	LEVEL	+2	Z= 2.00	00 (in)
		Z= 1.00 X(in)			+2 R(in)		00 (in) Y(in)
	R(in)	X(in)	Y(in)	θ(deg) 	R(in)	X(in)	Y(in)
θ(deg)	R(in) 4.101 3.915					X(in) 4.120	Y(in) 0.000
θ(deg) 0 10 20	R(in) 4.101 3.915 3.724	X(in) 4.101 3.856 3.500	Y(in) 0.000 0.678 1.270	θ(deg) 0	R(in) 4.120	X(in)	Y(in)
θ(deg) 0 10 20 30	R(in) 4.101 3.915 3.724 3.808	X(in) 4.101 3.856 3.500 3.300	Y(in) 0.000 0.678 1.270 1.900	θ(deg) 0 10 20 30	R(in) 4.120 4.139 4.097 3.914	X(in) 4.120 4.076 3.852 3.392	Y(in) 0.000 0.717 1.398 1.953
θ(deg) 0 10 20 30 40	R(in) 4.101 3.915 3.724 3.808 3.722	X(in) 4.101 3.856 3.500 3.300 2.854	Y(in) 0.000 0.678 1.270 1.900 2.388	θ(deg) 0 10 20 30 40	R(in) 4.120 4.139 4.097 3.914 3.668	X(in) 4.120 4.076 3.852 3.392 2.813	Y(in) 0.000 0.717 1.398 1.953 2.354
θ(deg) 0 10 20 30 40 50	R(in) 4.101 3.915 3.724 3.808 3.722 3.533	X(in) 4.101 3.856 3.500 3.300 2.854 2.275	Y(in) 0.000 0.678 1.270 1.900 2.388 2.703	θ(deg) 0 10 20 30 40 50	R(in) 4.120 4.139 4.097 3.914 3.668 3.477	X(in) 4.120 4.076 3.852 3.392 2.813 2.239	Y(in) 0.000 0.717 1.398 1.953 2.354 2.660
θ (deg) 0 10 20 30 40 50 60	R(in) 4.101 3.915 3.724 3.808 3.722 3.533 3.415	X(in) 4.101 3.856 3.500 3.300 2.854 2.275 1.711	Y(in) 0.000 0.678 1.270 1.900 2.388 2.703 2.956	θ(deg) 0 10 20 30 40 50 60	R(in) 4.120 4.139 4.097 3.914 3.668 3.477 3.352	X(in) 4.120 4.076 3.852 3.392 2.813 2.239 1.680	Y(in) 0.000 0.717 1.398 1.953 2.354 2.660 2.901
θ(deg) 0 10 20 30 40 50	R(in) 4.101 3.915 3.724 3.808 3.722 3.533 3.415 3.315	X(in) 4.101 3.856 3.500 3.300 2.854 2.275 1.711 1.137	Y(in) 0.000 0.678 1.270 1.900 2.388 2.703 2.956 3.114	θ(deg) 0 10 20 30 40 50 60 70	R(in) 4.120 4.139 4.097 3.914 3.668 3.477 3.352 3.273	X(in) 4.120 4.076 3.852 3.392 2.813 2.239 1.680 1.122	Y(in) 0.000 0.717 1.398 1.953 2.354 2.660 2.901 3.075
θ (deg) 0 10 20 30 40 50 60 70	R(in) 4.101 3.915 3.724 3.808 3.722 3.533 3.415	X(in) 4.101 3.856 3.500 3.300 2.854 2.275 1.711	Y(in) 0.000 0.678 1.270 1.900 2.388 2.703 2.956	θ(deg) 0 10 20 30 40 50 60	R(in) 4.120 4.139 4.097 3.914 3.668 3.477 3.352 3.273 3.226	X(in) 4.120 4.076 3.852 3.392 2.813 2.239 1.680 1.122 0.562	Y(in) 0.000 0.717 1.398 1.953 2.354 2.660 2.901 3.075 3.177
θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 4.101 3.915 3.724 3.808 3.722 3.533 3.415 3.315 3.234 3.179 3.360	X(in) 4.101 3.856 3.500 3.300 2.854 2.275 1.711 1.137 0.563 0.000 -0.585	Y(in) 0.000 0.678 1.270 1.900 2.388 2.703 2.956 3.114 3.185	θ(deg) 0 10 20 30 40 50 60 70 80	R(in) 4.120 4.139 4.097 3.914 3.668 3.477 3.352 3.273	X(in) 4.120 4.076 3.852 3.392 2.813 2.239 1.680 1.122	Y(in) 0.000 0.717 1.398 1.953 2.354 2.660 2.901 3.075
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110	R(in) 4.101 3.915 3.724 3.808 3.722 3.533 3.415 3.315 3.234 3.179 3.360 3.514	X(in) 4.101 3.856 3.500 3.300 2.854 2.275 1.711 1.137 0.563 0.000 -0.585 -1.205	Y(in) 0.000 0.678 1.270 1.900 2.388 2.703 2.956 3.114 3.185 3.179 3.308 3.301	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110	R(in) 4.120 4.139 4.097 3.914 3.668 3.477 3.352 3.273 3.226 3.208 3.280 3.404	X(in) 4.120 4.076 3.852 3.392 2.813 2.239 1.680 1.122 0.562 0.000	Y(in) 0.000 0.717 1.398 1.953 2.354 2.660 2.901 3.075 3.177 3.208
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120	R(in) 4.101 3.915 3.724 3.808 3.722 3.533 3.415 3.315 3.234 3.179 3.360 3.514 3.535	X(in) 4.101 3.856 3.500 3.300 2.854 2.275 1.711 1.137 0.563 0.000 -0.585 -1.205 -1.772	Y(in) 0.000 0.678 1.270 1.900 2.388 2.703 2.956 3.114 3.185 3.179 3.308 3.301 3.060	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120	R(in) 4.120 4.139 4.097 3.914 3.668 3.477 3.352 3.273 3.226 3.208 3.280 3.404 3.573	X(in) 4.120 4.076 3.852 3.392 2.813 2.239 1.680 1.122 0.562 0.000 -0.571 -1.167 -1.790	Y(in) 0.000 0.717 1.398 1.953 2.354 2.660 2.901 3.075 3.177 3.208 3.230 3.198 3.092
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 4.101 3.915 3.724 3.808 3.722 3.533 3.415 3.315 3.234 3.179 3.360 3.514 3.535 3.712	X(in) 4.101 3.856 3.500 3.300 2.854 2.275 1.711 1.137 0.563 0.000 -0.585 -1.205 -1.772 -2.390	Y(in) 0.000 0.678 1.270 1.900 2.388 2.703 2.956 3.114 3.185 3.179 3.308 3.301 3.060 2.840	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 4.120 4.139 4.097 3.914 3.668 3.477 3.352 3.226 3.228 3.228 3.280 3.404 3.573 3.757	X(in) 4.120 4.076 3.852 3.392 2.813 2.239 1.680 1.122 0.562 0.000 -0.571 -1.167 -1.790 -2.419	Y(in) 0.000 0.717 1.398 1.953 2.354 2.660 2.901 3.075 3.177 3.208 3.230 3.198 3.092 2.875
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 4.101 3.915 3.724 3.808 3.722 3.533 3.415 3.315 3.234 3.179 3.360 3.514 3.535 3.712 3.861	X(in) 4.101 3.856 3.500 3.300 2.854 2.275 1.711 1.137 0.563 0.000 -0.585 -1.205 -1.772 -2.390 -2.961	Y(in) 0.000 0.678 1.270 1.900 2.388 2.703 2.956 3.114 3.185 3.179 3.308 3.301 3.060 2.840 2.478	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 4.120 4.139 4.097 3.914 3.668 3.477 3.352 3.273 3.226 3.208 3.208 3.280 3.404 3.573 3.757 3.912	X(in) 4.120 4.076 3.852 3.392 2.813 2.239 1.680 1.122 0.562 0.000 -0.571 -1.167 -1.790 -2.419 -3.000	Y(in) 0.000 0.717 1.398 1.953 2.354 2.660 2.901 3.075 3.177 3.208 3.230 3.198 3.092 2.875 2.510
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 4.101 3.915 3.724 3.808 3.722 3.533 3.415 3.315 3.234 3.179 3.360 3.514 3.535 3.712 3.861 3.946	X(in) 4.101 3.856 3.500 3.300 2.854 2.275 1.711 1.137 0.563 0.000 -0.585 -1.205 -1.772 -2.390 -2.961 -3.420	Y(in) 0.000 0.678 1.270 1.900 2.388 2.703 2.956 3.114 3.185 3.179 3.308 3.301 3.060 2.840 2.478 1.969	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 4.120 4.139 4.097 3.914 3.668 3.477 3.352 3.273 3.226 3.208 3.280 3.404 3.573 3.757 3.912 4.002	X(in) 4.120 4.076 3.852 3.392 2.813 2.239 1.680 1.122 0.562 0.000 -0.571 -1.167 -1.790 -2.419 -3.000 -3.468	Y(in) 0.000 0.717 1.398 1.953 2.354 2.660 2.901 3.075 3.177 3.208 3.230 3.198 3.092 2.875 2.510 1.997
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 4.101 3.915 3.724 3.808 3.722 3.533 3.415 3.315 3.234 3.179 3.360 3.514 3.535 3.712 3.861	X(in) 4.101 3.856 3.500 3.300 2.854 2.275 1.711 1.137 0.563 0.000 -0.585 -1.205 -1.772 -2.390 -2.961	Y(in) 0.000 0.678 1.270 1.900 2.388 2.703 2.956 3.114 3.185 3.179 3.308 3.301 3.060 2.840 2.478	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 4.120 4.139 4.097 3.914 3.668 3.477 3.352 3.273 3.226 3.208 3.208 3.280 3.404 3.573 3.757 3.912	X(in) 4.120 4.076 3.852 3.392 2.813 2.239 1.680 1.122 0.562 0.000 -0.571 -1.167 -1.790 -2.419 -3.000	Y(in) 0.000 0.717 1.398 1.953 2.354 2.660 2.901 3.075 3.177 3.208 3.230 3.198 3.092 2.875 2.510

TABLE 5. LARGE HEADFORM SKIN - EXTERIOR DIMENSIONS (cont.)

LEVEL	+3	Z= 3.00	00 (in)	LEVEL	+4	Z= 4.00	00 (in)
θ (deg)	R(in)	X(in)	Y(in)	θ (deg)	R(in)	X(in)	Y(in)
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160	3.885 3.903 3.877 3.749 3.550 3.374 3.266 3.201 3.164 3.151 3.224 3.340 3.486 3.635 3.752 3.816 3.847	3.885 3.844 3.645 3.249 2.723 2.173 1.636 1.097 0.551 0.000 -0.561 -1.145 -1.747 -2.340 -2.878 -3.308 -3.616	0.000 0.676 1.323 1.870 2.278 2.582 2.826 3.007 3.116 3.151 3.175 3.138 3.016 2.781 2.408 1.904 1.312	0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160	3.183 3.216 3.230 3.165 3.046 2.940 2.887 2.865 2.856 2.856 2.854 2.921 3.013 3.120 3.217 3.282 3.302 3.293	3.183 3.168 3.036 2.743 2.336 1.893 1.447 0.982 0.497 0.000 -0.509 -1.033 -1.563 -2.071 -2.517 -2.861 -3.096	0.000 0.557 1.102 1.579 1.955 2.250 2.499 2.691 2.854 2.854 2.877 2.830 2.700 2.461 2.106 1.647 1.123
170 180	3.863 3.870	-3.804 -3.870	0.669	170 180	3.281 3.278	-3.231	0.568
LEVEL θ(deg)		Z= 5.00 X(in)					
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180	1.460 1.504 1.561 1.570 1.545 1.542 1.581 1.627 1.662 1.677 1.733 1.807 1.890 1.967 2.014 2.024 2.015 2.007	1.460 1.482 1.468 1.360 1.185 0.993 0.792 0.558 0.289 0.000 -0.302 -0.620 -0.947 -1.266 -1.545 -1.754 -1.894 -1.977 -2.007	0.000 0.261 0.533 0.783 0.992 1.180 1.368 1.528 1.637 1.677 1.697 1.695 1.293 1.010 0.687 0.348 0.000				

TABLE 5. LARGE HEADFORM SKIN - EXTERIOR DIMENSIONS (cont.)

- 1. Apex is located at (-0.199,0.000,5.330) for (X,Y,Z) or (0.199,180,5.330) for (R, θ ,Z).
- 2. Headform is symmetrical about the mid-sagittal plane.

TABLE 6. LARGE HEADFORM SKULL - EXTERIOR DIMENSIONS

${ t LEVEL}$	-4	Z = -3.00	00 (in)	LEVEL	-3	Z = -2.0	00 (in)
θ (deg)	R(in)	X(in)	Y(in)	θ (deg)	R(in)	X(in)	Y(in)
	2 400	2 400					
0	3.499	3.499	0.000	0	3.530	3.530	0.000
10	3.363	3.316	0.565	10	3.425	3.376	0.575
20	3.116	2.940	1.034	20	3.223	3.041	1.069
30	2.862	2.499	1.394	30	3.004	2.623	1.463
40	2.630	2.043	1.657	40	2.789	2.166	1.756
50	2.436	1.597	1.839	50	2.598	1.703	1.961
60	2.289	1.174	1.965	60	2.455	1.259	2.107
70				70	2.327	0.820	2.177
80				80			
90				90			
100				100			
110				110			
120				120			
130				130			,
140				140			
150				150			
160				160			
170				170			
180				180			
LEVEL	-2	z = -1.00)(in)	T.E.VET.	_1	z = -0.36	52 (in)
LEVEL		Z = -1.00		LEVEL		Z = -0.36	• •
LEVEL θ(deg)		Z= -1.00 X(in)				Z= -0.30 X(in)	•
							• •
θ(deg)	R(in)	X(in)	Y(in)	θ(deg) 	R(in)	X(in)	Y(in)
θ(deg) 0	R(in) 3.533	X(in) 3.533	Y(in) 0.000	θ(deg) 0	R(in) 3.526	X(in) 3.526	Y(in) 0.000
θ(deg) 0 10	R(in) 3.533 3.463	X(in) 3.533 3.413	Y(in) 0.000 0.582	θ(deg) 0 10	R(in) 3.526 3.478	X(in) 3.526 3.429	Y(in) 0.000 0.584
θ(deg) 0 10 20	R(in) 3.533 3.463 3:312	X(in) 3.533 3.413 3.124	Y(in) 0.000 0.582 1.099	θ(deg) 0 10 20	R(in) 3.526 3.478 3.360	X(in) 3.526 3.429 3.170	Y(in) 0.000 0.584 1.115
θ(deg) 0 10 20 30	R(in) 3.533 3.463 3.312 3.127	X(in) 3.533 3.413 3.124 2.731	Y(in) 0.000 0.582 1.099 1.523	θ(deg) 0 10 20 30	R(in) 3.526 3.478 3.360 3.192	X(in) 3.526 3.429 3.170 2.788	Y(in) 0.000 0.584 1.115 1.555
θ(deg) 0 10 20 30 40	R(in) 3.533 3.463 3.312 3.127 2.926	X(in) 3.533 3.413 3.124 2.731 2.273	Y(in) 0.000 0.582 1.099 1.523 1.843	θ(deg) 0 10 20 30 40	R(in) 3.526 3.478 3.360 3.192 2.996	X(in) 3.526 3.429 3.170 2.788 2.327	Y(in) 0.000 0.584 1.115 1.555 1.887
θ(deg) 0 10 20 30 40 50	R(in) 3.533 3.463 3.312 3.127 2.926 2.749	X(in) 3.533 3.413 3.124 2.731 2.273 1.802	Y(in) 0.000 0.582 1.099 1.523 1.843 2.076	θ (deg) 0 10 20 30 40 50	R(in) 3.526 3.478 3.360 3.192 2.996 2.834	X(in) 3.526 3.429 3.170 2.788 2.327 1.858	Y(in) 0.000 0.584 1.115 1.555 1.887 2.140
θ(deg) 0 10 20 30 40 50 60	R(in) 3.533 3.463 3.312 3.127 2.926 2.749 2.619	X(in) 3.533 3.413 3.124 2.731 2.273 1.802 1.343	Y(in) 0.000 0.582 1.099 1.523 1.843 2.076 2.248	θ(deg) 0 10 20 30 40 50 60	R(in) 3.526 3.478 3.360 3.192 2.996 2.834 2.715	X(in) 3.526 3.429 3.170 2.788 2.327 1.858 1.392 0.927	Y(in) 0.000 0.584 1.115 1.555 1.887 2.140 2.330
θ(deg) 0 10 20 30 40 50 60 70	R(in) 3.533 3.463 3.312 3.127 2.926 2.749 2.619 2.514	X(in) 3.533 3.413 3.124 2.731 2.273 1.802 1.343 0.886	Y(in) 0.000 0.582 1.099 1.523 1.843 2.076 2.248 2.353	θ(deg) 0 10 20 30 40 50 60 70	R(in) 3.526 3.478 3.360 3.192 2.996 2.834 2.715 2.631	X(in) 3.526 3.429 3.170 2.788 2.327 1.858 1.392	Y(in) 0.000 0.584 1.115 1.555 1.887 2.140 2.330 2.462
θ(deg) 0 10 20 30 40 50 60 70 80	R(in) 3.533 3.463 3.312 3.127 2.926 2.749 2.619 2.514	X(in) 3.533 3.413 3.124 2.731 2.273 1.802 1.343 0.886	Y(in) 0.000 0.582 1.099 1.523 1.843 2.076 2.248 2.353	θ(deg) 0 10 20 30 40 50 60 70 80	R(in) 3.526 3.478 3.360 3.192 2.996 2.834 2.715 2.631 2.553	X(in) 3.526 3.429 3.170 2.788 2.327 1.858 1.392 0.927 0.458	Y(in) 0.000 0.584 1.115 1.555 1.887 2.140 2.330 2.462 2.512
θ(deg) 0 10 20 30 40 50 60 70 80 90	R(in) 3.533 3.463 3.312 3.127 2.926 2.749 2.619 2.514	X(in) 3.533 3.413 3.124 2.731 2.273 1.802 1.343 0.886	Y(in) 0.000 0.582 1.099 1.523 1.843 2.076 2.248 2.353	θ(deg) 0 10 20 30 40 50 60 70 80 90	R(in) 3.526 3.478 3.360 3.192 2.996 2.834 2.715 2.631 2.553 2.461 2.528	X(in) 3.526 3.429 3.170 2.788 2.327 1.858 1.392 0.927 0.458 0.000 -0.454	Y(in) 0.000 0.584 1.115 1.555 1.887 2.140 2.330 2.462 2.512 2.461 2.486
θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 3.533 3.463 3.312 3.127 2.926 2.749 2.619 2.514	X(in) 3.533 3.413 3.124 2.731 2.273 1.802 1.343 0.886	Y(in) 0.000 0.582 1.099 1.523 1.843 2.076 2.248 2.353	θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 3.526 3.478 3.360 3.192 2.996 2.834 2.715 2.631 2.553 2.461	X(in) 3.526 3.429 3.170 2.788 2.327 1.858 1.392 0.927 0.458 0.000	Y(in) 0.000 0.584 1.115 1.555 1.887 2.140 2.330 2.462 2.512 2.461
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110	R(in) 3.533 3.463 3.312 3.127 2.926 2.749 2.619 2.514	X(in) 3.533 3.413 3.124 2.731 2.273 1.802 1.343 0.886	Y(in) 0.000 0.582 1.099 1.523 1.843 2.076 2.248 2.353	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110	R(in) 3.526 3.478 3.360 3.192 2.996 2.834 2.715 2.631 2.553 2.461 2.528 2.621	X(in) 3.526 3.429 3.170 2.788 2.327 1.858 1.392 0.927 0.458 0.000 -0.454 -0.924	Y(in) 0.000 0.584 1.115 1.555 1.887 2.140 2.330 2.462 2.512 2.461 2.486 2.452
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120	R(in) 3.533 3.463 3.312 3.127 2.926 2.749 2.619 2.514	X(in) 3.533 3.413 3.124 2.731 2.273 1.802 1.343 0.886	Y(in) 0.000 0.582 1.099 1.523 1.843 2.076 2.248 2.353	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120	R(in) 3.526 3.478 3.360 3.192 2.996 2.834 2.715 2.631 2.553 2.461 2.528 2.621 2.735	X(in) 3.526 3.429 3.170 2.788 2.327 1.858 1.392 0.927 0.458 0.000 -0.454 -0.924 -1.403	Y(in) 0.000 0.584 1.115 1.555 1.887 2.140 2.330 2.462 2.512 2.461 2.486 2.452 2.348
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 3.533 3.463 3.312 3.127 2.926 2.749 2.619 2.514	X(in) 3.533 3.413 3.124 2.731 2.273 1.802 1.343 0.886	Y(in) 0.000 0.582 1.099 1.523 1.843 2.076 2.248 2.353	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 3.526 3.478 3.360 3.192 2.996 2.834 2.715 2.631 2.553 2.461 2.528 2.621 2.735 2.857	X(in) 3.526 3.429 3.170 2.788 2.327 1.858 1.392 0.927 0.458 0.000 -0.454 -0.924 -1.403 -1.873	Y(in) 0.000 0.584 1.115 1.555 1.887 2.140 2.330 2.462 2.512 2.461 2.486 2.452 2.348 2.157 1.862
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 3.533 3.463 3.312 3.127 2.926 2.749 2.619 2.514	X(in) 3.533 3.413 3.124 2.731 2.273 1.802 1.343 0.886	Y(in) 0.000 0.582 1.099 1.523 1.843 2.076 2.248 2.353	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 3.526 3.478 3.360 3.192 2.996 2.834 2.715 2.631 2.553 2.461 2.528 2.621 2.735 2.857 2.957	X(in) 3.526 3.429 3.170 2.788 2.327 1.858 1.392 0.927 0.458 0.000 -0.454 -0.924 -1.403 -1.873 -2.297	Y(in) 0.000 0.584 1.115 1.555 1.887 2.140 2.330 2.462 2.512 2.461 2.486 2.452 2.348 2.157 1.862 1.466
θ(deg) 0 10 20 30 40 50 60 70 80 90 110 120 130 140 150	R(in) 3.533 3.463 3.312 3.127 2.926 2.749 2.619 2.514	X(in) 3.533 3.413 3.124 2.731 2.273 1.802 1.343 0.886	Y(in) 0.000 0.582 1.099 1.523 1.843 2.076 2.248 2.353	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 3.526 3.478 3.360 3.192 2.996 2.834 2.715 2.631 2.553 2.461 2.528 2.621 2.735 2.857 2.957 3.009	X(in) 3.526 3.429 3.170 2.788 2.327 1.858 1.392 0.927 0.458 0.000 -0.454 -0.924 -1.403 -1.873 -2.297 -2.628	Y(in) 0.000 0.584 1.115 1.555 1.887 2.140 2.330 2.462 2.512 2.461 2.486 2.452 2.348 2.157 1.862 1.466 1.006
θ(deg) 0 10 20 30 40 50 60 70 80 90 110 120 130 140 150 160	R(in) 3.533 3.463 3.312 3.127 2.926 2.749 2.619 2.514	X(in) 3.533 3.413 3.124 2.731 2.273 1.802 1.343 0.886	Y(in) 0.000 0.582 1.099 1.523 1.843 2.076 2.248 2.353	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160	R(in) 3.526 3.478 3.360 3.192 2.996 2.834 2.715 2.631 2.553 2.461 2.528 2.621 2.735 2.857 2.957 3.009 3.031	X(in) 3.526 3.429 3.170 2.788 2.327 1.858 1.392 0.927 0.458 0.000 -0.454 -0.924 -1.403 -1.873 -2.297 -2.628 -2.859	Y(in) 0.000 0.584 1.115 1.555 1.887 2.140 2.330 2.462 2.512 2.461 2.486 2.452 2.348 2.157 1.862 1.466

TABLE 6. LARGE HEADFORM SKULL - EXTERIOR DIMENSIONS (cont.)

LEVEL	0	z = 0.00	00 (in)	LEVEL	+1	Z=1.0	00 (in)
θ (deg)	R(in)	X(in)	Y(in)	heta (deg)	R(in)	X(in)	Y(in)
0	3.531	3.531	0.000	0	3.656	3.656	0.000
10	3.496	3.446	0.587	10	3.595	3.544	0.604
20	3.390	3.198	1.125	20	3.539	3.338	1.174
30	3.213	2.806	1.565	30	3.343	2.919	1.629
40	3.034	2.357	1.911	40	3.173	2.464	1.998
50	2.879	1.887	2.174	50	2.998	1.966	2.264
60	2.765	1.418	2.374	60 70	2.882	1.478	2.474
70	2.691	0.948	2.518	70	2.808	0.990	2.628
80	2.624	0.471	2.582	80	2.763	0.496	2.719
90	2.557	0.000	2.557	90	2.743	0.000	2.743
100	2.624	-0.471	2.581	100	2.810	-0.504	2.764
110	2.723	-0.960	2.548	110	2.923	-1.030	2.735
120	2.849	-1.461	2.446	120	3.076	-1.578	2.641
130	2.987	-1.958	2.255	130	3.249	-2.130	2.453
140	3.102	-2.410	1.954	140	3.399	-2.640	2.140
150	3.168	-2.767	1.544	150	3.491	-3.049	1.701
160	3.200	-3.018	1.062	160	3.543	-3.342	1.175
170	3.214	-3.169	0.540	170	3.572	-3.521	0.600
180	3.222	-3.222	0.000	180	3.584	-3.584	0.000
LEVEL	+2	Z= 2.00	00 (in)	LEVEL ·	+3	Z= 3.0	00 (in)
LEVEL θ(deg)		Z= 2.00 X(in)		LEVEL θ(deg)		Z= 3.0 X(in)	
LEVEL θ(deg)		Z= 2.00 X(in)			+3 R(in)		
θ(deg)	R(in)	X(in)	Y(in)	θ(deg) 	R(in)	X(in)	Y(in)
θ(deg) 0	R(in) 3.636	X(in) 3.636	Y(in) 0.000	θ(deg) 0	R(in) 3.333	X(in) 	Y(in) 0.000
θ(deg) 0 10	R(in) 3.636 3.648	X(in) 3.636 3.596	Y(in) 0.000 0.613	θ(deg) 0 10	R(in) 3.333 3.348	X(in) 3.333 3.300	Y(in) 0.000 0.562
θ(deg) 0 10 20	R(in) 3.636 3.648 3.604	X(in) 3.636 3.596 3.400	Y(in) 0.000 0.613 1.196	θ(deg) 0 10 20	R(in) 3.333 3.348 3.323	X(in) 3.333 3.300 3.135	Y(in) 0.000 0.562 1.102
θ(deg) 0 10 20 30	R(in) 3.636 3.648 3.604 3.437	X(in) 3.636 3.596 3.400 3.001	Y(in) 0.000 0.613 1.196 1.674	θ(deg) 0 10 20 30	R(in) 3.333 3.348 3.323 3.210	X(in) 3.333 3.300 3.135 2.803	Y(in) 0.000 0.562 1.102 1.564
θ(deg) 0 10 20 30 40	R(in) 3.636 3.648 3.604 3.437 3.209	X(in) 3.636 3.596 3.400 3.001 2.493	Y(in) 0.000 0.613 1.196 1.674 2.021	θ(deg) 0 10 20 30 40	R(in) 3.333 3.348 3.323 3.210 3.035	X(in) 3.333 3.300 3.135 2.803 2.358	Y(in) 0.000 0.562 1.102 1.564 1.912
θ(deg) 0 10 20 30 40 50	R(in) 3.636 3.648 3.604 3.437 3.209 3.025	X(in) 3.636 3.596 3.400 3.001 2.493 1.983	Y(in) 0.000 0.613 1.196 1.674 2.021 2.284	θ (deg) 0 10 20 30 40 50	R(in) 3.333 3.348 3.323 3.210 3.035 2.877 2.777 2.717	X(in) 3.333 3.300 3.135 2.803 2.358 1.887	Y(in) 0.000 0.562 1.102 1.564 1.912 2.172
θ(deg) 0 10 20 30 40 50 60 70 80	R(in) 3.636 3.648 3.604 3.437 3.209 3.025 2.902 2.822 2.774	X(in) 3.636 3.596 3.400 3.001 2.493 1.983 1.489 0.995 0.498	Y(in) 0.000 0.613 1.196 1.674 2.021 2.284 2.491 2.641 2.729	θ(deg) 0 10 20 30 40 50 60 70 80	R(in) 3.333 3.348 3.323 3.210 3.035 2.877 2.777 2.717 2.682	X(in) 3.333 3.300 3.135 2.803 2.358 1.887 1.425 0.958 0.482	Y(in) 0.000 0.562 1.102 1.564 1.912 2.172 2.384 2.542 2.639
θ(deg) 0 10 20 30 40 50 60 70 80 90	R(in) 3.636 3.648 3.604 3.437 3.209 3.025 2.902 2.822 2.774 2.757	X(in) 3.636 3.596 3.400 3.001 2.493 1.983 1.489 0.995 0.498 0.000	Y(in) 0.000 0.613 1.196 1.674 2.021 2.284 2.491 2.641 2.729 2.757	θ(deg) 0 10 20 30 40 50 60 70 80 90	R(in) 3.333 3.348 3.323 3.210 3.035 2.877 2.777 2.717 2.682 2.671	X(in) 3.333 3.300 3.135 2.803 2.358 1.887 1.425 0.958	Y(in) 0.000 0.562 1.102 1.564 1.912 2.172 2.384 2.542
θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 3.636 3.648 3.604 3.437 3.209 3.025 2.902 2.822 2.774	X(in) 3.636 3.596 3.400 3.001 2.493 1.983 1.489 0.995 0.498 0.000 -0.507	Y(in) 0.000 0.613 1.196 1.674 2.021 2.284 2.491 2.641 2.729	θ(deg) 0 10 20 30 40 50 60 70 80 90 100	R(in) 3.333 3.348 3.323 3.210 3.035 2.877 2.777 2.682 2.671 2.735	X(in) 3.333 3.300 3.135 2.803 2.358 1.887 1.425 0.958 0.482	Y(in) 0.000 0.562 1.102 1.564 1.912 2.172 2.384 2.542 2.639
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110	R(in) 3.636 3.648 3.604 3.437 3.209 3.025 2.902 2.822 2.774 2.757 2.822 2.937	X(in) 3.636 3.596 3.400 3.001 2.493 1.983 1.489 0.995 0.498 0.000 -0.507 -1.035	Y(in) 0.000 0.613 1.196 1.674 2.021 2.284 2.491 2.641 2.729 2.757 2.776 2.748	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110	R(in) 3.333 3.348 3.323 3.210 3.035 2.877 2.777 2.717 2.682 2.671 2.735 2.838	X(in) 3.333 3.300 3.135 2.803 2.358 1.887 1.425 0.958 0.482 0.000 -0.491 -1.000	Y(in) 0.000 0.562 1.102 1.564 1.912 2.172 2.384 2.542 2.639 2.671 2.691 2.656
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120	R(in) 3.636 3.648 3.604 3.437 3.209 3.025 2.902 2.822 2.774 2.757 2.822 2.937 3.094	X(in) 3.636 3.596 3.400 3.001 2.493 1.983 1.489 0.995 0.498 0.000 -0.507 -1.035 -1.587	Y(in) 0.000 0.613 1.196 1.674 2.021 2.284 2.491 2.641 2.729 2.757 2.776 2.748 2.656	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120	R(in) 3.333 3.348 3.323 3.210 3.035 2.877 2.777 2.717 2.682 2.671 2.735 2.838 2.967	X(in) 3.333 3.300 3.135 2.803 2.358 1.887 1.425 0.958 0.482 0.000 -0.491 -1.000 -1.522	Y(in) 0.000 0.562 1.102 1.564 1.912 2.172 2.384 2.542 2.639 2.671 2.691 2.656 2.547
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 3.636 3.648 3.604 3.437 3.209 3.025 2.902 2.822 2.774 2.757 2.822 2.937 3.094 3.267	X(in) 3.636 3.596 3.400 3.001 2.493 1.983 1.489 0.995 0.498 0.000 -0.507 -1.035 -1.587 -2.142	Y(in) 0.000 0.613 1.196 1.674 2.021 2.284 2.491 2.641 2.729 2.757 2.776 2.748 2.656 2.467	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130	R(in) 3.333 3.348 3.323 3.210 3.035 2.877 2.777 2.682 2.671 2.735 2.838 2.967 3.101	X(in) 3.333 3.300 3.135 2.803 2.358 1.887 1.425 0.958 0.482 0.000 -0.491 -1.000 -1.522 -2.033	Y(in) 0.000 0.562 1.102 1.564 1.912 2.172 2.384 2.542 2.639 2.671 2.691 2.656 2.547 2.341
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 3.636 3.648 3.604 3.437 3.209 3.025 2.902 2.822 2.774 2.757 2.822 2.937 3.094 3.267 3.417	X(in) 3.636 3.596 3.400 3.001 2.493 1.983 1.489 0.995 0.498 0.000 -0.507 -1.035 -1.587 -2.142 -2.654	Y(in) 0.000 0.613 1.196 1.674 2.021 2.284 2.491 2.641 2.729 2.757 2.776 2.748 2.656 2.467 2.152	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	R(in) 3.333 3.348 3.323 3.210 3.035 2.877 2.777 2.682 2.671 2.735 2.838 2.967 3.101 3.208	X(in) 3.333 3.300 3.135 2.803 2.358 1.887 1.425 0.958 0.482 0.000 -0.491 -1.000 -1.522 -2.033 -2.492	Y(in) 0.000 0.562 1.102 1.564 1.912 2.172 2.384 2.542 2.639 2.671 2.691 2.656 2.547 2.341 2.020
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 3.636 3.648 3.604 3.437 3.209 3.025 2.902 2.822 2.774 2.757 2.822 2.937 3.094 3.267 3.417 3.512	X(in) 3.636 3.596 3.400 3.001 2.493 1.983 1.489 0.995 0.498 0.000 -0.507 -1.035 -1.587 -2.142 -2.654 -3.067	Y(in) 0.000 0.613 1.196 1.674 2.021 2.284 2.491 2.641 2.729 2.757 2.776 2.748 2.656 2.467 2.152 1.711	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 3.333 3.348 3.323 3.210 3.035 2.877 2.777 2.717 2.682 2.671 2.735 2.838 2.967 3.101 3.208 3.271	X(in) 3.333 3.300 3.135 2.803 2.358 1.887 1.425 0.958 0.482 0.000 -0.491 -1.000 -1.522 -2.033 -2.492 -2.856	Y(in) 0.000 0.562 1.102 1.564 1.912 2.172 2.384 2.542 2.639 2.671 2.691 2.656 2.547 2.341 2.020 1.594
θ(deg) 0 10 20 30 40 50 60 70 80 90 110 120 130 140 150 160	R(in) 3.636 3.648 3.604 3.437 3.209 3.025 2.902 2.822 2.774 2.757 2.822 2.937 3.094 3.267 3.417 3.512 3.566	X(in) 3.636 3.596 3.400 3.001 2.493 1.983 1.489 0.995 0.498 0.000 -0.507 -1.035 -1.587 -2.142 -2.654 -3.067 -3.364	Y(in) 0.000 0.613 1.196 1.674 2.021 2.284 2.491 2.641 2.729 2.757 2.776 2.748 2.656 2.467 2.152 1.711 1.183	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160	R(in) 3.333 3.348 3.323 3.210 3.035 2.877 2.777 2.717 2.682 2.671 2.735 2.838 2.967 3.101 3.208 3.271 3.302	X(in) 3.333 3.300 3.135 2.803 2.358 1.887 1.425 0.958 0.482 0.000 -0.491 -1.000 -1.522 -2.033 -2.492 -2.856 -3.115	Y(in) 0.000 0.562 1.102 1.564 1.912 2.172 2.384 2.542 2.639 2.671 2.691 2.656 2.547 2.341 2.020 1.594 1.096
θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 3.636 3.648 3.604 3.437 3.209 3.025 2.902 2.822 2.774 2.757 2.822 2.937 3.094 3.267 3.417 3.512	X(in) 3.636 3.596 3.400 3.001 2.493 1.983 1.489 0.995 0.498 0.000 -0.507 -1.035 -1.587 -2.142 -2.654 -3.067	Y(in) 0.000 0.613 1.196 1.674 2.021 2.284 2.491 2.641 2.729 2.757 2.776 2.748 2.656 2.467 2.152 1.711	θ(deg) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	R(in) 3.333 3.348 3.323 3.210 3.035 2.877 2.777 2.717 2.682 2.671 2.735 2.838 2.967 3.101 3.208 3.271	X(in) 3.333 3.300 3.135 2.803 2.358 1.887 1.425 0.958 0.482 0.000 -0.491 -1.000 -1.522 -2.033 -2.492 -2.856	Y(in) 0.000 0.562 1.102 1.564 1.912 2.172 2.384 2.542 2.639 2.671 2.691 2.656 2.547 2.341 2.020 1.594

TABLE 6. LARGE HEADFORM SKULL - EXTERIOR DIMENSIONS (cont.)

LEVEL	+4	Z = 4.000) (in)
θ (deg)	R(in)	X(in)	Y(in)
0 10 20 30 40 50 60 70 80 90	2.405 2.440 2.464 2.422 2.336 2.264 2.235 2.225 2.223 2.224 2.282	2.405 2.405 2.325 2.115 1.814 1.484 1.146 0.784 0.399 0.000 -0.410	0.000 0.410 0.818 1.180 1.471 1.709 1.919 2.082 2.187 2.224 2.244
110 120 130 140 150 160 170 180	2.359 2.451 2.536 2.595 2.614 2.608 2.599 2.597	-0.832 -1.257 -1.663 -2.015 -2.283 -2.460 -2.562 -2.597	2.208 2.104 1.915 1.634 1.273 0.865 0.437 0.000

- 1. Apex is located at (-0.177,0.000,4.877) for (X,Y,Z) or (0.177,180,4.877) for (R, θ ,Z).
- 2. Headform is symmetrical about the mid-sagittal plane.

Accernel 2/8/2000

DEPARTMENT OF THE ARMY

US ARMY MEDICAL RESEARCH AND MATERIEL COMMAND 504 SCOTT STREET FORT DETRICK, MARYLAND 21702-5012

REPLY TO ATTENTION OF:

MCMR-RMI-S

(70-1y)

21 Jan 00

MEMORANDUM FOR Administrator, Defense Technical Information Center, ATTN: DTIC-OCA, 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218

SUBJECT: Request Change in Distribution Statement

- 1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limitation assigned to technical reports written for the attached Awards. Request the limited distribution statements for Accession Document Numbers listed be changed to "Approved for public release; distribution unlimited." These reports should be released to the National Technical Information Service.
- 2. Point of contact for this request is Ms. Virginia Miller at DSN 343-7327 or by email at virginia.miller@det.amedd.army.mil.

FOR THE COMMANDER:

Encl as PHYLIS M. RINEHART

Deputy Chief of Staff for Information Management